These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37043017)

  • 1. Application of antifungal metabolites from Streptomyces philanthi RL-1-178 for maize grain coating formulations and their efficacy as biofungicide during storage.
    Boukaew S; Mahasawat P; Petlamul W; Sattayasamitsathit S; Surinkaew S; Chuprom J; Prasertsan P
    World J Microbiol Biotechnol; 2023 Apr; 39(6):157. PubMed ID: 37043017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of the antifungal metabolites of Streptomyces philanthi RL-1-178 on aflatoxin degradation with its application to prevent aflatoxigenic fungi in stored maize grains and identification of the bioactive compound.
    Boukaew S; Prasertsan P; Mahasawat P; Sriyatep T; Petlamul W
    World J Microbiol Biotechnol; 2022 Nov; 39(1):24. PubMed ID: 36422721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of volatile compounds from Streptomyces philanthi RL-1-178 as a biofumigant for controlling growth and aflatoxin production of the two aflatoxin-producing fungi on stored soybean seeds.
    Boukaew S; Prasertsan P
    J Appl Microbiol; 2020 Sep; 129(3):652-664. PubMed ID: 32196866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal and antiaflatoxigenic mechanism activity of freeze-dried culture filtrate of Streptomyces philanthi RL-1-178 on the two aflatoxigenic fungi and identification of its active component.
    Boukaew S; Zhang Z; Prasertsan P; Igarashi Y
    J Appl Microbiol; 2023 Feb; 134(2):. PubMed ID: 36724264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Niosome-Encapsulated Essential Oil Formulation to Prevent
    García-Díaz M; Patiño B; Vázquez C; Gil-Serna J
    Toxins (Basel); 2019 Nov; 11(11):. PubMed ID: 31698851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen.
    Boukaew S; Cheirsilp B; Yossan S; Khunjan U; Petlamul W; Prasertsan P
    J Appl Microbiol; 2022 Mar; 132(3):1990-2003. PubMed ID: 34564911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.
    Falade TD; Syed Mohdhamdan SH; Sultanbawa Y; Fletcher MT; Harvey JJ; Chaliha M; Fox GP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1241-53. PubMed ID: 27264786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of environmental factors on Streptomyces spp. metabolites against Botrytis cinerea.
    Boukaew S; Yossan S; Cheirsilp B; Prasertsan P
    J Basic Microbiol; 2022 May; 62(5):611-622. PubMed ID: 35064583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain.
    Moghadam HD; Sani AM; Sangatash MM
    Toxicol Ind Health; 2016 Mar; 32(3):493-9. PubMed ID: 24193054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of storage environment on maize grain: CO
    Garcia-Cela E; Kiaitsi E; Sulyok M; Krska R; Medina A; Petit Damico I; Magan N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jan; 36(1):175-185. PubMed ID: 30638440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize.
    Mateo EM; Gómez JV; Domínguez I; Gimeno-Adelantado JV; Mateo-Castro R; Gavara R; Jiménez M
    Int J Food Microbiol; 2017 Aug; 254():36-46. PubMed ID: 28525761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households.
    Kagot V; De Boevre M; Landschoot S; Obiero G; Okoth S; De Saeger S
    Int J Food Microbiol; 2022 Feb; 363():109502. PubMed ID: 34952410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural maize phenolic acids for control of aflatoxigenic fungi on maize.
    Nesci A; Gsponer N; Etcheverry M
    J Food Sci; 2007 Jun; 72(5):M180-5. PubMed ID: 17995741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Biodegradable Coatings on the Growth of
    Ventura-Aguilar RI; Gónzalez-Andrade C; Hernández-López M; Correa-Pacheco ZN; Teksür PK; Ramos-García ML; Bautista-Baños S
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation.
    Khalil OAA; Hammad AA; Sebaei AS
    Toxicon; 2021 Jul; 198():111-120. PubMed ID: 33961848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize.
    Camiletti BX; Moral J; Asensio CM; Torrico AK; Lucini EI; Giménez-Pecci MP; Michailides TJ
    Phytopathology; 2018 Jul; 108(7):818-828. PubMed ID: 29384448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus
    Xiang F; Zhao Q; Zhao K; Pei H; Tao F
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32882838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting antifungal activity of Streptomyces philanthi RM-1-138 against Rhizoctonia solani.
    Boukaew S; Prasertsan P
    World J Microbiol Biotechnol; 2014 Jan; 30(1):323-9. PubMed ID: 23839715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182.
    Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW
    Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Campos-Avelar I; Colas de la Noue A; Durand N; Cazals G; Martinez V; Strub C; Fontana A; Schorr-Galindo S
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.