These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37043132)
21. Characterization of Cu(II) and Cd(II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. Chen C; Lei W; Lu M; Zhang J; Zhang Z; Luo C; Chen Y; Hong Q; Shen Z Environ Sci Pollut Res Int; 2016 Apr; 23(7):6861-72. PubMed ID: 26670028 [TBL] [Abstract][Full Text] [Related]
22. Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost. Xu X; Xia L; Huang Q; Gu JD; Chen W Environ Technol; 2012; 33(13-15):1661-70. PubMed ID: 22988626 [TBL] [Abstract][Full Text] [Related]
23. Cadmium binding characterization and mechanism of a newly isolated strain Cystobasidium oligophagum QN-3. Li W; Wang T Biotechnol Prog; 2020 Sep; 36(5):e3029. PubMed ID: 32463147 [TBL] [Abstract][Full Text] [Related]
24. Cadmium resistance, microbial biosorptive performance and mechanisms of a novel biocontrol bacterium Paenibacillus sp. LYX-1. Luo Y; Liao M; Zhang Y; Xu N; Xie X; Fan Q Environ Sci Pollut Res Int; 2022 Sep; 29(45):68692-68706. PubMed ID: 35543785 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. He Y; Lin H; Jin X; Dong Y; Luo M Ecotoxicol Environ Saf; 2020 Jul; 198():110660. PubMed ID: 32361492 [TBL] [Abstract][Full Text] [Related]
26. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Heidari P; Panico A Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32517236 [TBL] [Abstract][Full Text] [Related]
27. Limnothrix sp. KO05: A newly characterized cyanobacterial biosorbent for cadmium removal: the enzymatic and non-enzymatic antioxidant reactions to cadmium toxicity. Haghighi O; Shahryari S; Ebadi M; Modiri S; Zahiri HS; Maleki H; Noghabi KA Environ Toxicol Pharmacol; 2017 Apr; 51():142-155. PubMed ID: 28343753 [TBL] [Abstract][Full Text] [Related]
28. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Lebeau T; Bagot D; Jézéquel K; Fabre B Sci Total Environ; 2002 May; 291(1-3):73-83. PubMed ID: 12150444 [TBL] [Abstract][Full Text] [Related]
29. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater. Liang DH; Hu Y J Hazard Mater; 2021 Jan; 402():124032. PubMed ID: 33077268 [TBL] [Abstract][Full Text] [Related]
30. Different survival strategies of the phosphate-mineralizing bacterium Enterobacter sp. PMB-5 in response to cadmium stress: Biomineralization, biosorption, and bioaccumulation. Huang H; Wang K; Li S; Liang K; Dai J; Jian J; Li Y; Liu H; Xu H J Hazard Mater; 2024 Mar; 465():133284. PubMed ID: 38134699 [TBL] [Abstract][Full Text] [Related]
31. Bio-removal of cadmium by growing deep-sea bacterium Pseudoalteromonas sp. SCSE709-6. Zhou W; Zhang H; Ma Y; Zhou J; Zhang Y Extremophiles; 2013 Sep; 17(5):723-31. PubMed ID: 23812889 [TBL] [Abstract][Full Text] [Related]
32. Immobilization of cadmium by Burkholderia sp. QY14 through modified microbially induced phosphate precipitation. Zeng G; Qiao S; Wang X; Sheng M; Wei M; Chen Q; Xu H; Xu F J Hazard Mater; 2021 Jun; 412():125156. PubMed ID: 33556857 [TBL] [Abstract][Full Text] [Related]
33. [Inactivation of Cd and As by an Yin XF; Liu YL; Wu D; Huang XM; Zhang PX; Tie BQ Huan Jing Ke Xue; 2023 Jan; 44(1):436-443. PubMed ID: 36635831 [TBL] [Abstract][Full Text] [Related]
34. Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. Zheng Y; Xiao C; Chi R World J Microbiol Biotechnol; 2021 Nov; 37(12):208. PubMed ID: 34719751 [TBL] [Abstract][Full Text] [Related]
35. Characterization of cadmium-resistant bacteria for its potential in promoting plant growth and cadmium accumulation in Sesbania bispinosa root. Kartik VP; Jinal HN; Amaresan N Int J Phytoremediation; 2016 Nov; 18(11):1061-6. PubMed ID: 27185302 [TBL] [Abstract][Full Text] [Related]
36. Modified Rice Straw Enhanced Cadmium (II) Immobilization in Soil and Promoted the Degradation of Phenanthrene in Co-Contaminated Soil. Elyamine AM; Moussa MG; Afzal J; Rana MS; Imran M; Zhao X; Hu CX Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31058819 [TBL] [Abstract][Full Text] [Related]
37. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Liu Y; Tie B; Li Y; Lei M; Wei X; Liu X; Du H Ecotoxicol Environ Saf; 2018 Nov; 163():223-229. PubMed ID: 30055387 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous phenanthrene and cadmium removal from contaminated soil by a ligand/biosurfactant solution. Lima TM; Procópio LC; Brandão FD; Carvalho AM; Tótola MR; Borges AC Biodegradation; 2011 Sep; 22(5):1007-15. PubMed ID: 21416334 [TBL] [Abstract][Full Text] [Related]
39. Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Peng D; Qiao S; Luo Y; Ma H; Zhang L; Hou S; Wu B; Xu H J Hazard Mater; 2020 Dec; 400():123116. PubMed ID: 32569980 [TBL] [Abstract][Full Text] [Related]
40. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology. Hosseini Zabet A; Ahmady-Asbchin S World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]