BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37043191)

  • 1. Structure-metal ion selectivity of rhodamine-based chemosensors.
    Ghosh P; Roy P
    Chem Commun (Camb); 2023 Apr; 59(35):5174-5200. PubMed ID: 37043191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two rhodamine-azo based fluorescent probes for recognition of trivalent metal ions: crystal structure elucidation and biological applications.
    Mandal J; Pal K; Ghosh Chowdhury S; Karmakar P; Panja A; Banerjee S; Saha A
    Dalton Trans; 2022 Oct; 51(40):15555-15570. PubMed ID: 36168977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects.
    Lalitha R; Velmathi S
    J Fluoresc; 2024 Jan; 34(1):15-118. PubMed ID: 37212978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions.
    Kim HN; Lee MH; Kim HJ; Kim JS; Yoon J
    Chem Soc Rev; 2008 Aug; 37(8):1465-72. PubMed ID: 18648672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Rhodamine 6G-Based Fluorescent Chemosensors for Al
    Mandal J; Ghorai P; Pal K; Bhaumik T; Karmakar P; Saha A
    ACS Omega; 2020 Jan; 5(1):145-157. PubMed ID: 31956761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rhodamine based dye for sensing of Group 13 metal ions.
    Hazra A; Roy P
    Anal Chim Acta; 2022 Feb; 1193():339378. PubMed ID: 35058009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective detection of Pd
    Tang FK; Chan SM; Wang T; Kwan CS; Huang R; Cai Z; Leung KC
    Talanta; 2020 Apr; 210():120634. PubMed ID: 31987194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Six-Membered pH-Insensitive Rhodamine Spirocycle in Selective Sensing of Cu
    Majumdar A; Lim CS; Kim HM; Ghosh K
    ACS Omega; 2017 Nov; 2(11):8167-8176. PubMed ID: 30023577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel chemosensor based on rhodamine derivative for colorimetric and fluorometric detection of Cu2+ in aqueous solution.
    Wang Y; Wu HQ; Sun JH; Liu XY; Luo J; Chen MQ
    J Fluoresc; 2012 May; 22(3):799-805. PubMed ID: 22441753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly.
    Panja S; Mondal S; Ghosh S; Ghosh U; Ghosh K
    ACS Omega; 2020 Jun; 5(23):13984-13993. PubMed ID: 32566865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Turn-On" Fluorescent and Colorimetric Detection of Zn
    Lee SO; An KL; Shin SR; Jun K; Naveen M; Son YA
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5333-5340. PubMed ID: 29458585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(II) ion.
    Bag B; Pal A
    Org Biomol Chem; 2011 Jun; 9(12):4467-80. PubMed ID: 21503366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tricolor emission of a fluorescent heteroditopic ligand over a concentration gradient of zinc(II) ions.
    Sreenath K; Clark RJ; Zhu L
    J Org Chem; 2012 Sep; 77(18):8268-79. PubMed ID: 22924325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rhodamine based biocompatible chemosensor for Al
    Roy A; Das S; Sacher S; Mandal SK; Roy P
    Dalton Trans; 2019 Dec; 48(47):17594-17604. PubMed ID: 31754672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition preference of rhodamine-thiospirolactams for mercury(II) in aqueous solution.
    Huang W; Song C; He C; Lv G; Hu X; Zhu X; Duan C
    Inorg Chem; 2009 Jun; 48(12):5061-72. PubMed ID: 19445489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new rhodamine-based fluorescent chemodosimeter for mercuric ions in water media.
    Quy PT; Hien NK; Bao NC; Nhan DT; Khanh DV; Nhung NT; Tung TQ; Luyen ND; Quang DT
    Luminescence; 2015 May; 30(3):325-9. PubMed ID: 25066926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective fluorescent probe for Cu2+ based on rhodamine B derivative.
    Xu J; Hou Y; Ma Q; Wu X; Feng S; Zhang J; Shen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():416-22. PubMed ID: 24508880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam.
    Li H; Guan H; Duan X; Hu J; Wang G; Wang Q
    Org Biomol Chem; 2013 Mar; 11(11):1805-9. PubMed ID: 23381503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.
    Piao J; Lv J; Zhou X; Zhao T; Wu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():475-80. PubMed ID: 24682064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric and turn-on Fluorescence Chemosensor for Hg
    Rao PG; Saritha B; Siva Rao T
    J Fluoresc; 2019 Mar; 29(2):353-360. PubMed ID: 30613850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.