These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 37043469)
1. A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19. Rainey AL; Liang S; Bisesi JH; Sabo-Attwood T; Maurelli AT PLoS One; 2023; 18(4):e0284370. PubMed ID: 37043469 [TBL] [Abstract][Full Text] [Related]
2. Assessment of seasonality and normalization techniques for wastewater-based surveillance in Ontario, Canada. Dhiyebi HA; Abu Farah J; Ikert H; Srikanthan N; Hayat S; Bragg LM; Qasim A; Payne M; Kaleis L; Paget C; Celmer-Repin D; Folkema A; Drew S; Delatolla R; Giesy JP; Servos MR Front Public Health; 2023; 11():1186525. PubMed ID: 37711234 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Different Reverse Transcriptase-Polymerase Chain Reaction-Based Methods for Wastewater Surveillance of SARS-CoV-2: Exploratory Study. Länsivaara A; Lehto KM; Hyder R; Janhonen ES; Lipponen A; Heikinheimo A; Pitkänen T; Oikarinen S; JMIR Public Health Surveill; 2024 Aug; 10():e53175. PubMed ID: 39158943 [TBL] [Abstract][Full Text] [Related]
4. Tracking the temporal variation of COVID-19 surges through wastewater-based epidemiology during the peak of the pandemic: A six-month long study in Charlotte, North Carolina. Barua VB; Juel MAI; Blackwood AD; Clerkin T; Ciesielski M; Sorinolu AJ; Holcomb DA; Young I; Kimble G; Sypolt S; Engel LS; Noble RT; Munir M Sci Total Environ; 2022 Mar; 814():152503. PubMed ID: 34954186 [TBL] [Abstract][Full Text] [Related]
5. Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology. Hsu SY; Bayati M; Li C; Hsieh HY; Belenchia A; Klutts J; Zemmer SA; Reynolds M; Semkiw E; Johnson HY; Foley T; Wieberg CG; Wenzel J; Johnson MC; Lin CH Water Res; 2022 Sep; 223():118985. PubMed ID: 36030667 [TBL] [Abstract][Full Text] [Related]
6. Surveillance of SARS-CoV-2 in nine neighborhood sewersheds in Detroit Tri-County area, United States: Assessing per capita SARS-CoV-2 estimations and COVID-19 incidence. Li Y; Miyani B; Zhao L; Spooner M; Gentry Z; Zou Y; Rhodes G; Li H; Kaye A; Norton J; Xagoraraki I Sci Total Environ; 2022 Dec; 851(Pt 2):158350. PubMed ID: 36041621 [TBL] [Abstract][Full Text] [Related]
7. SARS-CoV-2 concentration in wastewater consistently predicts trends in COVID-19 case counts by at least two days across multiple WWTP scales. Swift CL; Isanovic M; Correa Velez KE; Norman RS Environ Adv; 2023 Apr; 11():100347. PubMed ID: 36718477 [TBL] [Abstract][Full Text] [Related]
8. Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. Lu E; Ai Y; Davis A; Straathof J; Halloran K; Hull N; Winston R; Weir MH; Soller J; Bohrerova Z; Oglesbee M; Lee J Environ Res; 2022 Sep; 212(Pt E):113580. PubMed ID: 35671797 [TBL] [Abstract][Full Text] [Related]
9. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. Ai Y; Davis A; Jones D; Lemeshow S; Tu H; He F; Ru P; Pan X; Bohrerova Z; Lee J Sci Total Environ; 2021 Dec; 801():149757. PubMed ID: 34467932 [TBL] [Abstract][Full Text] [Related]
10. Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. Acosta N; Bautista MA; Waddell BJ; McCalder J; Beaudet AB; Man L; Pradhan P; Sedaghat N; Papparis C; Bacanu A; Hollman J; Krusina A; Southern DA; Williamson T; Li C; Bhatnagar S; Murphy S; Chen J; Kuzma D; Clark R; Meddings J; Hu J; Cabaj JL; Conly JM; Dai X; Lu X; Chekouo T; Ruecker NJ; Achari G; Ryan MC; Frankowski K; Hubert CRJ; Parkins MD Water Res; 2022 Jul; 220():118611. PubMed ID: 35661506 [TBL] [Abstract][Full Text] [Related]
11. Analytical validation of a semi-automated methodology for quantitative measurement of SARS-CoV-2 RNA in wastewater collected in northern New England. Robbins AA; Gallagher TL; Toledo DM; Hershberger KC; Salmela SM; Barney RE; Szczepiorkowski ZM; Tsongalis GJ; Martin IW; Hubbard JA; Lefferts JA Microbiol Spectr; 2024 Jun; 12(6):e0112223. PubMed ID: 38747589 [TBL] [Abstract][Full Text] [Related]
12. Detection of SARS-CoV-2 RNA in wastewater and comparison to COVID-19 cases in two sewersheds, North Carolina, USA. Grube AM; Coleman CK; LaMontagne CD; Miller ME; Kothegal NP; Holcomb DA; Blackwood AD; Clerkin TJ; Serre ML; Engel LS; Guidry VT; Noble RT; Stewart JR Sci Total Environ; 2023 Feb; 858(Pt 3):159996. PubMed ID: 36356771 [TBL] [Abstract][Full Text] [Related]
13. Longitudinal and quantitative fecal shedding dynamics of SARS-CoV-2, pepper mild mottle virus, and crAssphage. Arts PJ; Kelly JD; Midgley CM; Anglin K; Lu S; Abedi GR; Andino R; Bakker KM; Banman B; Boehm AB; Briggs-Hagen M; Brouwer AF; Davidson MC; Eisenberg MC; Garcia-Knight M; Knight S; Peluso MJ; Pineda-Ramirez J; Diaz Sanchez R; Saydah S; Tassetto M; Martin JN; Wigginton KR mSphere; 2023 Aug; 8(4):e0013223. PubMed ID: 37338211 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the methods for isolation and detection of SARS-CoV-2 RNA in municipal wastewater. Lucansky V; Samec M; Burjanivova T; Lukacova E; Kolkova Z; Holubekova V; Turyova E; Hornakova A; Zaborsky T; Podlesniy P; Reizigova L; Dankova Z; Novakova E; Pecova R; Calkovska A; Halasova E Front Public Health; 2023; 11():1116636. PubMed ID: 36960362 [TBL] [Abstract][Full Text] [Related]
15. Does normalization of SARS-CoV-2 concentrations by Pepper Mild Mottle Virus improve correlations and lead time between wastewater surveillance and clinical data in Alberta (Canada): comparing twelve SARS-CoV-2 normalization approaches. Maal-Bared R; Qiu Y; Li Q; Gao T; Hrudey SE; Bhavanam S; Ruecker NJ; Ellehoj E; Lee BE; Pang X Sci Total Environ; 2023 Jan; 856(Pt 1):158964. PubMed ID: 36167131 [TBL] [Abstract][Full Text] [Related]
16. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Ahmed W; Bertsch PM; Angel N; Bibby K; Bivins A; Dierens L; Edson J; Ehret J; Gyawali P; Hamilton KA; Hosegood I; Hugenholtz P; Jiang G; Kitajima M; Sichani HT; Shi J; Shimko KM; Simpson SL; Smith WJM; Symonds EM; Thomas KV; Verhagen R; Zaugg J; Mueller JF J Travel Med; 2020 Aug; 27(5):. PubMed ID: 32662867 [TBL] [Abstract][Full Text] [Related]
17. Comparison of high-frequency in-pipe SARS-CoV-2 wastewater-based surveillance to concurrent COVID-19 random clinical testing on a public U.S. university campus. Wright J; Driver EM; Bowes DA; Johnston B; Halden RU Sci Total Environ; 2022 May; 820():152877. PubMed ID: 34998780 [TBL] [Abstract][Full Text] [Related]
18. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. Vigil K; D'Souza N; Bazner J; Cedraz FM; Fisch S; Rose JB; Aw TG Water Res; 2024 May; 254():121338. PubMed ID: 38430753 [TBL] [Abstract][Full Text] [Related]
19. Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies. Malla B; Shrestha S; Sthapit N; Hirai S; Raya S; Rahmani AF; Angga MS; Siri Y; Ruti AA; Haramoto E Sci Total Environ; 2024 Oct; 946():174419. PubMed ID: 38960169 [TBL] [Abstract][Full Text] [Related]
20. RNA Viromics of Southern California Wastewater and Detection of SARS-CoV-2 Single-Nucleotide Variants. Rothman JA; Loveless TB; Kapcia J; Adams ED; Steele JA; Zimmer-Faust AG; Langlois K; Wanless D; Griffith M; Mao L; Chokry J; Griffith JF; Whiteson KL Appl Environ Microbiol; 2021 Nov; 87(23):e0144821. PubMed ID: 34550753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]