These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37043597)
1. Porous-nanozyme-based colorimetric sensor for rapid detection of kanamycin in foods under neutral condition. Zou W; Wang J; Yang S; Tang Y; Niu X; Wu Y J Food Sci; 2023 May; 88(5):2009-2022. PubMed ID: 37043597 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-terminated few-layered Ti Wang W; Yin Y; Gunasekaran S Biosens Bioelectron; 2022 Dec; 218():114774. PubMed ID: 36206668 [TBL] [Abstract][Full Text] [Related]
3. Dual-mode colorimetric and photothermal aptasensor for detection of kanamycin using flocculent platinum nanoparticles. Lee HB; Son SE; Ha CH; Kim DH; Seong GH Biosens Bioelectron; 2024 Apr; 249():116007. PubMed ID: 38194812 [TBL] [Abstract][Full Text] [Related]
4. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS Tang Y; Hu Y; Zhou P; Wang C; Tao H; Wu Y J Agric Food Chem; 2021 Mar; 69(9):2884-2893. PubMed ID: 33646795 [TBL] [Abstract][Full Text] [Related]
5. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Zhao T; Chen Q; Wen Y; Bian X; Tao Q; Liu G; Yan J Food Chem; 2022 May; 377():132072. PubMed ID: 35008020 [TBL] [Abstract][Full Text] [Related]
6. A facile colorimetric sensor for ultrasensitive and selective detection of Lead(II) in environmental and biological samples based on intrinsic peroxidase-mimic activity of WS Tang Y; Hu Y; Yang Y; Liu B; Wu Y Anal Chim Acta; 2020 Apr; 1106():115-125. PubMed ID: 32145839 [TBL] [Abstract][Full Text] [Related]
7. Polyoxometalate-based nanozyme with laccase-mimicking activity for kanamycin detection based on colorimetric assay. Lu J; Xu X; Chen J Mikrochim Acta; 2024 Aug; 191(9):544. PubMed ID: 39158765 [TBL] [Abstract][Full Text] [Related]
8. "Three-in-one" nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Li G; Liu S; Huo Y; Zhou H; Li S; Lin X; Kang W; Li S; Gao Z Anal Chim Acta; 2022 Aug; 1222():340178. PubMed ID: 35934425 [TBL] [Abstract][Full Text] [Related]
9. Facile Colorimetric Nanozyme Sheet for the Rapid Detection of Glyphosate in Agricultural Products Based on Inhibiting Peroxidase-Like Catalytic Activity of Porous Co Luo D; Huang X; Liu B; Zou W; Wu Y J Agric Food Chem; 2021 Mar; 69(11):3537-3547. PubMed ID: 33721998 [TBL] [Abstract][Full Text] [Related]
10. A novel colorimetric assay for sensitive detection of kanamycin based on the aptamer-regulated peroxidase-mimicking activity of Co Zhou X; Li J; Hu Y; Wu Y; Wang Y; Ning G Anal Methods; 2023 May; 15(20):2441-2447. PubMed ID: 37157837 [TBL] [Abstract][Full Text] [Related]
11. Chemiluminescence detection of kanamycin by DNA aptamer regulating peroxidase-like activity of Co Zhang X; Li Y; Xia S; Yang Z; Zhang B; Wang Y Anal Sci; 2024 Sep; ():. PubMed ID: 39287726 [TBL] [Abstract][Full Text] [Related]
12. A novel TMD-based peroxidase-mimicking nanozyme: From naked eye detection of leukocytosis-related diseases to sensing different bioanalytes. Afsah-Sahebi A; Shahangian SS; Khodajou-Masouleh H; H Sajedi R Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122260. PubMed ID: 36580748 [TBL] [Abstract][Full Text] [Related]
13. Reusable ring-like Fe Huang Y; Gu Y; Liu X; Deng T; Dai S; Qu J; Yang G; Qu L Biosens Bioelectron; 2022 Aug; 209():114253. PubMed ID: 35436737 [TBL] [Abstract][Full Text] [Related]
14. A dual-channel colorimetric and fluorescent sensor for the rapid and ultrasensitive detection of kanamycin based on gold nanoparticles-copper nanoclusters. Nie Q; Deng J; Xie B; Shi G; Zhou T Anal Methods; 2021 Dec; 13(48):5813-5820. PubMed ID: 34852031 [TBL] [Abstract][Full Text] [Related]
15. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Shen Y; Wei Y; Liu Z; Nie C; Ye Y Mikrochim Acta; 2022 May; 189(6):233. PubMed ID: 35622176 [TBL] [Abstract][Full Text] [Related]
16. Hollow POM@MOF-derived Porous NiMo Xu M; Li X; Sha JQ; Tong Z; Li Q; Liu C Chemistry; 2021 Jun; 27(35):9141-9151. PubMed ID: 33938042 [TBL] [Abstract][Full Text] [Related]
17. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Xu Y; Lu C; Sun Y; Shao Y; Cai Y; Zhang Y; Miao J; Miao P Mikrochim Acta; 2018 Nov; 185(12):548. PubMed ID: 30426224 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous silica stabilized Cu-Fe bimetallic nanozymes for total antioxidant capacity assay of fruit foods. Wang X; Chen X; Liu J; Tao H; Shao N; Li W; Huang S; Zhang X; Li N Appl Microbiol Biotechnol; 2023 Jul; 107(13):4301-4309. PubMed ID: 37256328 [TBL] [Abstract][Full Text] [Related]
19. Bismuth-based metal-organic framework peroxidase-mimic nanozyme: Preparation and mechanism for colorimetric-converted ultra-trace electrochemical sensing of chromium ion. Yang QY; Wan CQ; Wang YX; Shen XF; Pang YH J Hazard Mater; 2023 Jun; 451():131148. PubMed ID: 36889075 [TBL] [Abstract][Full Text] [Related]
20. Optimizing Colorimetric Assay Based on V₂O₅ Nanozymes for Sensitive Detection of H₂O₂ and Glucose. Sun J; Li C; Qi Y; Guo S; Liang X Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]