BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37043598)

  • 1. A comprehensive review of polyphenol oxidase in tea (Camellia sinensis): Physiological characteristics, oxidation manufacturing, and biosynthesis of functional constituents.
    Tang MG; Zhang S; Xiong LG; Zhou JH; Huang JA; Zhao AQ; Liu ZH; Liu AL
    Compr Rev Food Sci Food Saf; 2023 May; 22(3):2267-2291. PubMed ID: 37043598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Jasmonic Acid Pathway Positively Regulates the Polyphenol Oxidase-Based Defense against Tea Geometrid Caterpillars in the Tea Plant (Camellia sinensis).
    Zhang J; Zhang X; Ye M; Li XW; Lin SB; Sun XL
    J Chem Ecol; 2020 Mar; 46(3):308-316. PubMed ID: 32016775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves.
    Guo XY; Lv YQ; Ye Y; Liu ZY; Zheng XQ; Lu JL; Liang YR; Ye JH
    Food Chem; 2021 Mar; 339():128088. PubMed ID: 32979714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two New Polyphenol Oxidase Genes of Tea Plant (
    Huang C; Zhang J; Zhang X; Yu Y; Bian W; Zeng Z; Sun X; Li X
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30115844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances Regarding Polyphenol Oxidase in
    Zou C; Zhang X; Xu Y; Yin J
    Foods; 2024 Feb; 13(4):. PubMed ID: 38397522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prokaryotic expression and purification of Camellia sinensis polyphenol oxidase.
    Liu JW; Huang YY; Ding J; Liu C; Xiao XD; Ni DJ
    J Sci Food Agric; 2010 Nov; 90(14):2490-4. PubMed ID: 20661922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of polyphenol oxidase between small and large leaf tea cultivars.
    Chen CT; Yang CY; Tzen JTC
    Sci Rep; 2022 Jul; 12(1):12870. PubMed ID: 35896690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene
    Huang X; Ou S; Li Q; Luo Y; Lin H; Li J; Zhu M; Wang K
    Front Plant Sci; 2021; 12():739951. PubMed ID: 34804087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes cloning, sequencing and function identification of recombinant polyphenol oxidase isozymes for production of monomeric theaflavins from Camellia sinensis.
    Cai H; Zhong Z; Chen Y; Zhang S; Ling H; Fu H; Zhang L
    Int J Biol Macromol; 2023 Jun; 240():124353. PubMed ID: 37059281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments.
    Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH
    J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants.
    Yang ZW; Duan XN; Jin S; Li XW; Chen ZM; Ren BZ; Sun XL
    J Chem Ecol; 2013 Jun; 39(6):744-51. PubMed ID: 23702702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An In Vitro Catalysis of Tea Polyphenols by Polyphenol Oxidase.
    Liu K; Chen Q; Luo H; Li R; Chen L; Jiang B; Liang Z; Wang T; Ma Y; Zhao M
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis and metabolic profiling unveil the role of peroxidase CsGPX3 in theaflavin production in black tea processing.
    Zhang G; Yang J; Cui D; Zhao D; Benedito VA; Zhao J
    Food Res Int; 2020 Nov; 137():109677. PubMed ID: 33233254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins.
    Subramanian N; Venkatesh P; Ganguli S; Sinkar VP
    J Agric Food Chem; 1999 Jul; 47(7):2571-8. PubMed ID: 10552528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological Changes and Differential Gene Expression of Tea Plants (
    Wang Y; Li Y; Wang J; Xiang Z; Xi P; Zhao D
    DNA Cell Biol; 2021 Jul; 40(7):906-920. PubMed ID: 34129383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, microbial expression and structure-activity relationship of polyphenol oxidases from Camellia sinensis.
    Wu YL; Pan LP; Yu SL; Li HH
    J Biotechnol; 2010 Jan; 145(1):66-72. PubMed ID: 19857531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Tea Withering Process Using Ethylene or UV-C.
    Collings ER; Alamar MC; Márquez MB; Kourmpetli S; Kevei Z; Thompson AJ; Mohareb F; Terry LA
    J Agric Food Chem; 2021 Nov; 69(45):13596-13607. PubMed ID: 34739246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation characteristics of some assamica clones and process optimization of black tea manufacturing.
    Baruah AM; Mahanta PK
    J Agric Food Chem; 2003 Oct; 51(22):6578-88. PubMed ID: 14558781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative phenols in forage crops containing polyphenol oxidase enzymes.
    Parveen I; Threadgill MD; Moorby JM; Winters A
    J Agric Food Chem; 2010 Feb; 58(3):1371-82. PubMed ID: 20078064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.