BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37043705)

  • 1. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding.
    Kümmerlin M; Mazumder A; Kapanidis AN
    Chemphyschem; 2023 Jun; 24(12):e202300175. PubMed ID: 37043705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast, Background-Free DNA-PAINT Imaging Using FRET-Based Probes.
    Auer A; Strauss MT; Schlichthaerle T; Jungmann R
    Nano Lett; 2017 Oct; 17(10):6428-6434. PubMed ID: 28871786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defining the limits of single-molecule FRET resolution in TIRF microscopy.
    Holden SJ; Uphoff S; Hohlbein J; Yadin D; Le Reste L; Britton OJ; Kapanidis AN
    Biophys J; 2010 Nov; 99(9):3102-11. PubMed ID: 21044609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-photostable DNA FluoroCubes: Mechanism of Photostability and Compatibility with FRET and Dark Quenching.
    Blanchard AT; Li Z; Duran EC; Scull CE; Hoff JD; Wright KR; Pan V; Walter NG
    Nano Lett; 2022 Aug; 22(15):6235-6244. PubMed ID: 35881934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer.
    Zimmermann T
    Methods Mol Biol; 2019; 2040():235-274. PubMed ID: 31432483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers.
    Kemmerich FE; Swoboda M; Kauert DJ; Grieb MS; Hahn S; Schwarz FW; Seidel R; Schlierf M
    Nano Lett; 2016 Jan; 16(1):381-6. PubMed ID: 26632021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring multiple distances within a single molecule using switchable FRET.
    Uphoff S; Holden SJ; Le Reste L; Periz J; van de Linde S; Heilemann M; Kapanidis AN
    Nat Methods; 2010 Oct; 7(10):831-6. PubMed ID: 20818380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural dynamics of nucleic acids by single-molecule FRET.
    Krüger AC; Hildebrandt LL; Kragh SL; Birkedal V
    Methods Cell Biol; 2013; 113():1-37. PubMed ID: 23317895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET.
    Uphoff S; Gryte K; Evans G; Kapanidis AN
    Chemphyschem; 2011 Feb; 12(3):571-9. PubMed ID: 21280168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule FRET of protein structure and dynamics - a primer.
    Schuler B
    J Nanobiotechnology; 2013; 11 Suppl 1(Suppl 1):S2. PubMed ID: 24565277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
    Ghoneim M; Musselman CA
    J Fluoresc; 2023 Mar; 33(2):413-421. PubMed ID: 36435903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule FRET at 10 MHz Count Rates.
    Grabenhorst L; Sturzenegger F; Hasler M; Schuler B; Tinnefeld P
    J Am Chem Soc; 2024 Feb; 146(5):3539-3544. PubMed ID: 38266173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of cellulase colocalization on cellulose fiber with quantitative FRET measured by acceptor photobleaching and spectrally unmixing fluorescence microscopy.
    Wang L; Wang Y; Ragauskas AJ
    Analyst; 2012 Mar; 137(6):1319-24. PubMed ID: 22311108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming Temporal DNA Barcodes for Single-Molecule Fingerprinting.
    Shah S; Dubey AK; Reif J
    Nano Lett; 2019 Apr; 19(4):2668-2673. PubMed ID: 30896178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lived intracellular single-molecule fluorescence using electroporated molecules.
    Crawford R; Torella JP; Aigrain L; Plochowietz A; Gryte K; Uphoff S; Kapanidis AN
    Biophys J; 2013 Dec; 105(11):2439-50. PubMed ID: 24314075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral imaging of FRET-based cGMP probes.
    Rich TC; Britain AL; Stedman T; Leavesley SJ
    Methods Mol Biol; 2013; 1020():73-88. PubMed ID: 23709027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobleaching lifetimes of cyanine fluorophores used for single-molecule Förster resonance energy transfer in the presence of various photoprotection systems.
    Cooper D; Uhm H; Tauzin LJ; Poddar N; Landes CF
    Chembiochem; 2013 Jun; 14(9):1075-80. PubMed ID: 23733413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.