These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37043857)
1. Ocean acidification enhances the embryotoxicity of CuO nanoparticles to Oryzias melastigma. Wang H; Sui Q; Zhao J; Sun X; Zhu L; Chen B; Qu K; Xia B J Hazard Mater; 2023 Jul; 453():131361. PubMed ID: 37043857 [TBL] [Abstract][Full Text] [Related]
2. Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions. Chen Y; Wang X; Sui Q; Chang G; Sun X; Zhu L; Chen B; Qu K; Xia B Sci Total Environ; 2023 Mar; 865():161248. PubMed ID: 36587669 [TBL] [Abstract][Full Text] [Related]
3. Antagonism toxicity of CuO nanoparticles and mild ocean acidification to marine algae. Wang H; Zhao Y; Yin S; Dai Y; Zhao J; Wang Z; Xing B J Hazard Mater; 2023 Apr; 448():130857. PubMed ID: 36709738 [TBL] [Abstract][Full Text] [Related]
4. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma. Cong Y; Jin F; Wang J; Mu J Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification increases the toxic effects of TiO Xia B; Sui Q; Sun X; Han Q; Chen B; Zhu L; Qu K J Hazard Mater; 2018 Mar; 346():1-9. PubMed ID: 29232611 [TBL] [Abstract][Full Text] [Related]
6. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety. Zheng J; Li Q; Zheng X Sci Total Environ; 2023 Sep; 891():164473. PubMed ID: 37244623 [TBL] [Abstract][Full Text] [Related]
7. Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo-larval development of marine medaka (Oryzias melastigma). Sun L; Ruan J; Lu M; Chen M; Dai Z; Zuo Z Environ Geochem Health; 2019 Aug; 41(4):1847-1860. PubMed ID: 30066097 [TBL] [Abstract][Full Text] [Related]
8. Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Li L; Hu L; Zhou Q; Huang C; Wang Y; Sun C; Jiang G Environ Sci Technol; 2015 Feb; 49(4):2486-95. PubMed ID: 25625586 [TBL] [Abstract][Full Text] [Related]
9. Are CuO nanoparticles effects on hemocytes of the marine scallop (Chlamys farreri) caused by particles and/or corresponding released ions? Sun X; Chen B; Bin Xia ; Han Q; Zhu L; Qu K Ecotoxicol Environ Saf; 2017 May; 139():65-72. PubMed ID: 28110047 [TBL] [Abstract][Full Text] [Related]
10. Montmorillonite clay and humic acid modulate the behavior of copper oxide nanoparticles in aqueous environment and induces developmental defects in zebrafish embryo. Kansara K; Paruthi A; Misra SK; Karakoti AS; Kumar A Environ Pollut; 2019 Dec; 255(Pt 2):113313. PubMed ID: 31600709 [TBL] [Abstract][Full Text] [Related]
11. Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818). Yu X; Liu J; Qiu T; Cao L; Dou S Sci Total Environ; 2023 Jun; 875():162634. PubMed ID: 36894092 [TBL] [Abstract][Full Text] [Related]
12. Synthesis methods influence characteristics, behaviour and toxicity of bare CuO NPs compared to bulk CuO and ionic Cu after in vitro exposure of Ruditapes philippinarum hemocytes. Volland M; Hampel M; Katsumiti A; Yeste MP; Gatica JM; Cajaraville M; Blasco J Aquat Toxicol; 2018 Jun; 199():285-295. PubMed ID: 29702437 [TBL] [Abstract][Full Text] [Related]
13. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Rotini A; Gallo A; Parlapiano I; Berducci MT; Boni R; Tosti E; Prato E; Maggi C; Cicero AM; Migliore L; Manfra L Ecotoxicol Environ Saf; 2018 Jan; 147():852-860. PubMed ID: 28968938 [TBL] [Abstract][Full Text] [Related]
14. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures. Croteau MN; Misra SK; Luoma SN; Valsami-Jones E Environ Sci Technol; 2014 Sep; 48(18):10929-37. PubMed ID: 25110983 [TBL] [Abstract][Full Text] [Related]
15. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma). Wang X; Song L; Chen Y; Ran H; Song J Mar Environ Res; 2017 Oct; 131():10-18. PubMed ID: 28923289 [TBL] [Abstract][Full Text] [Related]
16. Effects of lipophilic phycotoxin okadaic acid on the early development and transcriptional expression of marine medaka Oryzias melastigma. Yang Y; Li A; Qiu J; Yan W; Han L; Li D; Yin C Aquat Toxicol; 2023 Jul; 260():106576. PubMed ID: 37196507 [TBL] [Abstract][Full Text] [Related]
17. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Mwaanga P; Carraway ER; van den Hurk P Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179 [TBL] [Abstract][Full Text] [Related]
18. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques. Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063 [TBL] [Abstract][Full Text] [Related]
19. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Wang J; Wang WX Environ Toxicol Chem; 2014 Mar; 33(3):632-40. PubMed ID: 24464862 [TBL] [Abstract][Full Text] [Related]
20. Influence of copper treatment on bioaccumulation, survival, behavior, and fecundity in the fruit fly Drosophila melanogaster: Toxicity of copper oxide nanoparticles differ from dissolved copper. Budiyanti DS; Moeller ME; Thit A Environ Toxicol Pharmacol; 2022 May; 92():103852. PubMed ID: 35307570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]