BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37043889)

  • 1. In silico assessment of risks associated with pesticides exposure during pregnancy.
    Sobańska AW
    Chemosphere; 2023 Jul; 329():138649. PubMed ID: 37043889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of placental barrier permeability: a model based on partial least squares variable selection procedure.
    Zhang YH; Xia ZN; Yan L; Liu SS
    Molecules; 2015 May; 20(5):8270-86. PubMed ID: 25961165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationships for the toxicity of organophosphorus and carbamate pesticides to the Rainbow trout Onchorhyncus mykiss.
    Bermúdez-Saldaña JM; Cronin MT
    Pest Manag Sci; 2006 Sep; 62(9):819-31. PubMed ID: 16763959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling.
    Devillers J
    SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).
    Bujak R; Struck-Lewicka W; Kaliszan M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015 Apr; 108():29-37. PubMed ID: 25703237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis.
    Vucicevic J; Nikolic K; Dobričić V; Agbaba D
    Eur J Pharm Sci; 2015 Feb; 68():94-105. PubMed ID: 25542610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR for gastro-intestinal absorption and blood-brain barrier permeation of pesticides.
    Toropov AA; Toropova AP; Benfenati E; Dorne JL
    Chem Biol Interact; 2018 Jun; 290():1-5. PubMed ID: 29753609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maternal-fetal transfer rates of PCBs, OCPs, PBDEs, and dioxin-like compounds predicted through quantitative structure-activity relationship modeling.
    Eguchi A; Hanazato M; Suzuki N; Matsuno Y; Todaka E; Mori C
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7212-7222. PubMed ID: 26396019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversed- and normal-phase liquid chromatography in quantitative structure retention-property relationships of newly synthesized seco-androstene derivatives.
    Milošević NP; Stojanović SZ; Penov-Gaši K; Perišić-Janjić N; Kaliszan R
    J Pharm Biomed Anal; 2014 Jan; 88():636-42. PubMed ID: 24216283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro models for the blood-brain barrier.
    Garberg P; Ball M; Borg N; Cecchelli R; Fenart L; Hurst RD; Lindmark T; Mabondzo A; Nilsson JE; Raub TJ; Stanimirovic D; Terasaki T; Oberg JO; Osterberg T
    Toxicol In Vitro; 2005 Apr; 19(3):299-334. PubMed ID: 15713540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-silico prediction of blood-brain barrier permeability.
    Yan A; Liang H; Chong Y; Nie X; Yu C
    SAR QSAR Environ Res; 2013 Jan; 24(1):61-74. PubMed ID: 23092117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates.
    Radan M; Djikic T; Obradovic D; Nikolic K
    Eur J Pharm Sci; 2022 Jan; 168():106056. PubMed ID: 34740787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of quantitative structure-activity relationships for modeling drug and chemical transport across the human placenta barrier: a multivariate data analysis approach.
    Giaginis C; Zira A; Theocharis S; Tsantili-Kakoulidou A
    J Appl Toxicol; 2009 Nov; 29(8):724-33. PubMed ID: 19728316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined computational-experimental approach to predict blood-brain barrier (BBB) permeation based on "green" salting-out thin layer chromatography supported by simple molecular descriptors.
    Ciura K; Belka M; Kawczak P; Bączek T; Markuszewski MJ; Nowakowska J
    J Pharm Biomed Anal; 2017 Sep; 143():214-221. PubMed ID: 28641198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.
    Zhu X; Ding G; Levy W; Jakobi G; Schramm KW
    J Environ Sci (China); 2011 Jun; 23 Suppl():S40-4. PubMed ID: 25084591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of human acute toxicity from physicochemical properties and non-vertebrate acute toxicity of the 38 organic chemicals of the MEIC priority list by PLS regression and neural network.
    Calleja MC; Geladi P; Persoone G
    Food Chem Toxicol; 1994 Oct; 32(10):923-41. PubMed ID: 7959448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeability and toxicological profile estimation of organochlorine compounds by biopartitioning micellar chromatography.
    Escuder-Gilabert L; Villanueva-Camañas RM; Sagrado S; Medina-Hernandez MJ
    Biomed Chromatogr; 2009 Apr; 23(4):382-9. PubMed ID: 18937305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR: an in silico approach for predicting the partitioning of pesticides into breast milk.
    Agatonovic-Kustrin S; Morton DW; Celebic D
    Comb Chem High Throughput Screen; 2013 Mar; 16(3):223-32. PubMed ID: 23228029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.
    Zhang L; Zhu H; Oprea TI; Golbraikh A; Tropsha A
    Pharm Res; 2008 Aug; 25(8):1902-14. PubMed ID: 18553217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.