BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37044067)

  • 1. Scalable generation of sensory neurons from human pluripotent stem cells.
    Deng T; Jovanovic VM; Tristan CA; Weber C; Chu PH; Inman J; Ryu S; Jethmalani Y; Ferreira de Sousa J; Ormanoglu P; Twumasi P; Sen C; Shim J; Jayakar S; Bear Zhang HX; Jo S; Yu W; Voss TC; Simeonov A; Bean BP; Woolf CJ; Singeç I
    Stem Cell Reports; 2023 Apr; 18(4):1030-1047. PubMed ID: 37044067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergence of peptidergic and non-peptidergic protein markers in the human dorsal root ganglion and spinal dorsal horn.
    Shiers SI; Sankaranarayanan I; Jeevakumar V; Cervantes A; Reese JC; Price TJ
    J Comp Neurol; 2021 Jul; 529(10):2771-2788. PubMed ID: 33550628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia.
    Ernsberger U
    Cell Tissue Res; 2009 Jun; 336(3):349-84. PubMed ID: 19387688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors.
    Tavares-Ferreira D; Shiers S; Ray PR; Wangzhou A; Jeevakumar V; Sankaranarayanan I; Cervantes AM; Reese JC; Chamessian A; Copits BA; Dougherty PM; Gereau RW; Burton MD; Dussor G; Price TJ
    Sci Transl Med; 2022 Feb; 14(632):eabj8186. PubMed ID: 35171654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Satellite Glial Cells Give Rise to Nociceptive Sensory Neurons.
    Wang D; Lu J; Xu X; Yuan Y; Zhang Y; Xu J; Chen H; Liu J; Shen Y; Zhang H
    Stem Cell Rev Rep; 2021 Jun; 17(3):999-1013. PubMed ID: 33389681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells.
    Saito-Diaz K; Street JR; Ulrichs H; Zeltner N
    Stem Cell Reports; 2021 Mar; 16(3):446-457. PubMed ID: 33545066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human peptidergic nociceptive sensory neurons generated from human epidermal neural crest stem cells (hEPI-NCSC).
    Wilson R; Ahmmed AA; Poll A; Sakaue M; Laude A; Sieber-Blum M
    PLoS One; 2018; 13(6):e0199996. PubMed ID: 29953534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nociceptor subtypes are born continuously over DRG development.
    Landy MA; Goyal M; Lai HC
    Dev Biol; 2021 Nov; 479():91-98. PubMed ID: 34352273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors.
    Eberhardt E; Havlicek S; Schmidt D; Link AS; Neacsu C; Kohl Z; Hampl M; Kist AM; Klinger A; Nau C; Schüttler J; Alzheimer C; Winkler J; Namer B; Winner B; Lampert A
    Stem Cell Reports; 2015 Sep; 5(3):305-13. PubMed ID: 26321143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A protocol to differentiate nociceptors, mechanoreceptors, and proprioceptors from human pluripotent stem cells.
    Saito-Diaz K; Zeltner N
    STAR Protoc; 2022 Jun; 3(2):101187. PubMed ID: 35330962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of sensory neuronal groups in CGRP-cre-ER reporter mice: Comparison to Nav1.8-cre, TRPV1-cre and TRPV1-GFP mouse lines.
    Patil MJ; Hovhannisyan AH; Akopian AN
    PLoS One; 2018; 13(6):e0198601. PubMed ID: 29864146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion.
    Shelukhina I; Paddenberg R; Kummer W; Tsetlin V
    Brain Struct Funct; 2015 Jul; 220(4):1885-99. PubMed ID: 24706047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons.
    Hulme AJ; McArthur JR; Maksour S; Miellet S; Ooi L; Adams DJ; Finol-Urdaneta RK; Dottori M
    Front Cell Neurosci; 2020; 14():600895. PubMed ID: 33362470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of human iPSC-derived sensory neurons and their functional assessment using multi electrode array.
    Hiranuma M; Okuda Y; Fujii Y; Richard JP; Watanabe T
    Sci Rep; 2024 Mar; 14(1):6011. PubMed ID: 38472288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.
    Helley MP; Abate W; Jackson SK; Bennett JH; Thompson SW
    Neuroscience; 2015 Dec; 310():686-98. PubMed ID: 26434622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical and Ultrastructural Characterization of Unmyelinated Non-peptidergic C-Nociceptors and C-Low Threshold Mechanoreceptors Projecting to Lamina II of the Mouse Spinal Cord.
    Salio C; Aimar P; Malapert P; Moqrich A; Merighi A
    Cell Mol Neurobiol; 2021 Mar; 41(2):247-262. PubMed ID: 32306148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients.
    Meents JE; Bressan E; Sontag S; Foerster A; Hautvast P; Rösseler C; Hampl M; Schüler H; Goetzke R; Le TKC; Kleggetveit IP; Le Cann K; Kerth C; Rush AM; Rogers M; Kohl Z; Schmelz M; Wagner W; Jørum E; Namer B; Winner B; Zenke M; Lampert A
    Pain; 2019 Jun; 160(6):1327-1341. PubMed ID: 30720580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to differentiate induced pluripotent stem cells into sensory neurons for disease modelling: a functional assessment.
    Kalia AK; Rösseler C; Granja-Vazquez R; Ahmad A; Pancrazio JJ; Neureiter A; Zhang M; Sauter D; Vetter I; Andersson A; Dussor G; Price TJ; Kolber BJ; Truong V; Walsh P; Lampert A
    Stem Cell Res Ther; 2024 Apr; 15(1):99. PubMed ID: 38581069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression.
    Fang X; Djouhri L; McMullan S; Berry C; Waxman SG; Okuse K; Lawson SN
    J Neurosci; 2006 Jul; 26(27):7281-92. PubMed ID: 16822986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Members of the CUGBP Elav-like family of RNA-binding proteins are expressed in distinct populations of primary sensory neurons.
    Grlickova-Duzevik E; Reimonn TM; Michael M; Tian T; Owyoung J; McGrath-Conwell A; Neufeld P; Mueth M; Molliver DC; Ward PJ; Harrison BJ
    J Comp Neurol; 2023 Oct; 531(14):1425-1442. PubMed ID: 37537886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.