BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37044067)

  • 21. Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling.
    Megat S; Ray PR; Tavares-Ferreira D; Moy JK; Sankaranarayanan I; Wanghzou A; Fang Lou T; Barragan-Iglesias P; Campbell ZT; Dussor G; Price TJ
    J Neurosci; 2019 Aug; 39(35):6829-6847. PubMed ID: 31253755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons.
    Cavanaugh DJ; Chesler AT; Bráz JM; Shah NM; Julius D; Basbaum AI
    J Neurosci; 2011 Jul; 31(28):10119-27. PubMed ID: 21752988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CGRPα-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch.
    McCoy ES; Taylor-Blake B; Zylka MJ
    PLoS One; 2012; 7(5):e36355. PubMed ID: 22563493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances for using human induced-pluripotent stem cells as pain-in-a-dish models of neuropathic pain.
    Labau JIR; Andelic M; Faber CG; Waxman SG; Lauria G; Dib-Hajj SD
    Exp Neurol; 2022 Dec; 358():114223. PubMed ID: 36100046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies.
    Viventi S; Dottori M
    Int J Biochem Cell Biol; 2018 Jul; 100():61-68. PubMed ID: 29772357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mouse DRG Cell Line with Properties of Nociceptors.
    Doran C; Chetrit J; Holley MC; Grundy D; Nassar MA
    PLoS One; 2015; 10(6):e0128670. PubMed ID: 26053673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons.
    Zavala K; Lee J; Chong J; Sharma M; Eilers H; Schumacher MA
    Neurosci Lett; 2014 Aug; 578():211-6. PubMed ID: 24468003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human vs. Mouse Nociceptors - Similarities and Differences.
    Rostock C; Schrenk-Siemens K; Pohle J; Siemens J
    Neuroscience; 2018 Sep; 387():13-27. PubMed ID: 29229553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Derivation of nociceptive sensory neurons from hiPSCs with early patterning and temporally controlled
    Plumbly W; Patikas N; Field SF; Foskolou S; Metzakopian E
    Cell Rep Methods; 2022 Nov; 2(11):100341. PubMed ID: 36452863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds.
    Zhao J; Lee MC; Momin A; Cendan CM; Shepherd ST; Baker MD; Asante C; Bee L; Bethry A; Perkins JR; Nassar MA; Abrahamsen B; Dickenson A; Cobb BS; Merkenschlager M; Wood JN
    J Neurosci; 2010 Aug; 30(32):10860-71. PubMed ID: 20702715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immortalized human dorsal root ganglion cells differentiate into neurons with nociceptive properties.
    Raymon HK; Thode S; Zhou J; Friedman GC; Pardinas JR; Barrere C; Johnson RM; Sah DW
    J Neurosci; 1999 Jul; 19(13):5420-8. PubMed ID: 10377351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specification of sensory neuron cell fate from the neural crest.
    Raible DW; Ungos JM
    Adv Exp Med Biol; 2006; 589():170-80. PubMed ID: 17076281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.
    Young GT; Gutteridge A; Fox H; Wilbrey AL; Cao L; Cho LT; Brown AR; Benn CL; Kammonen LR; Friedman JH; Bictash M; Whiting P; Bilsland JG; Stevens EB
    Mol Ther; 2014 Aug; 22(8):1530-1543. PubMed ID: 24832007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Essential role of Ret for defining non-peptidergic nociceptor phenotypes and functions in the adult mouse.
    Franck MC; Stenqvist A; Li L; Hao J; Usoskin D; Xu X; Wiesenfeld-Hallin Z; Ernfors P
    Eur J Neurosci; 2011 Apr; 33(8):1385-400. PubMed ID: 21395865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery.
    Mohammed ZA; Kaloyanova K; Nassar MA
    Pain; 2020 May; 161(5):1100-1108. PubMed ID: 31929383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of the 50B11 dorsal ganglion cells into NGF and GDNF responsive nociceptor subtypes.
    Dusan M; Jastrow C; Alyce MM; Yingkai W; Shashikanth M; Andelain E; Christine BM; Stuart BM; Oliver BG; Michael MZ; Nicolas VH; Damien KJ; Rainer HV
    Mol Pain; 2020; 16():1744806920970368. PubMed ID: 33307981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of iPS-Cells into Peripheral Sensory Neurons.
    Neureiter A; Eberhardt E; Lampert A
    Methods Mol Biol; 2022; 2429():175-188. PubMed ID: 35507161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain.
    Berta T; Qadri Y; Tan PH; Ji RR
    Expert Opin Ther Targets; 2017 Jul; 21(7):695-703. PubMed ID: 28480765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs.
    Nassenstein C; Taylor-Clark TE; Myers AC; Ru F; Nandigama R; Bettner W; Undem BJ
    J Physiol; 2010 Dec; 588(Pt 23):4769-83. PubMed ID: 20937710
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.