BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37044140)

  • 1. Mechanistic understanding of perfluorooctane sulfonate (PFOS) sorption by biochars.
    Krebsbach S; He J; Adhikari S; Olshansky Y; Feyzbar F; Davis LC; Oh TS; Wang D
    Chemosphere; 2023 Jul; 330():138661. PubMed ID: 37044140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batch and fixed bed sorption of low to moderate concentrations of aqueous per- and poly-fluoroalkyl substances (PFAS) on Douglas fir biochar and its Fe
    Rodrigo PM; Navarathna C; Pham MTH; McClain SJ; Stokes S; Zhang X; Perez F; Gunatilake SR; Karunanayake AG; Anderson R; Thirumalai RVKG; Mohan D; Pittman CU; Mlsna TE
    Chemosphere; 2022 Dec; 308(Pt 2):136155. PubMed ID: 36099986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis.
    Hassan M; Liu Y; Naidu R; Parikh SJ; Du J; Qi F; Willett IR
    Sci Total Environ; 2020 Nov; 744():140714. PubMed ID: 32717463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and 2D structural model of corn straw and poplar leaf biochars.
    Zhao N; Lv Y; Yang X; Huang F; Yang J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S; Zong Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30401-30409. PubMed ID: 30159845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on removal of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) using water treatment sludge and biochar.
    Nguyen MD; Sivaram AK; Megharaj M; Webb L; Adhikari S; Thomas M; Surapaneni A; Moon EM; Milne NA
    Chemosphere; 2023 Oct; 338():139412. PubMed ID: 37423412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the cadmium adsorption capacities of crop straw biochars produced using various feedstocks and pyrolysis temperatures.
    Sui F; Jiao M; Kang Y; Joseph S; Li L; Bian R; Munroe P; Mitchell DRG; Pan G
    Environ Sci Pollut Res Int; 2021 May; 28(17):21516-21527. PubMed ID: 33411284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms.
    Zhang Q; Wang J; Lyu H; Zhao Q; Jiang L; Liu L
    Sci Total Environ; 2019 Apr; 659():1537-1545. PubMed ID: 31096363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sewage sludge biochars as effective PFAS-sorbents.
    Krahn KM; Cornelissen G; Castro G; Arp HPH; Asimakopoulos AG; Wolf R; Holmstad R; Zimmerman AR; Sørmo E
    J Hazard Mater; 2023 Mar; 445():130449. PubMed ID: 36459882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of PFAS-contaminated soil with activated biochar.
    Sørmo E; Silvani L; Bjerkli N; Hagemann N; Zimmerman AR; Hale SE; Hansen CB; Hartnik T; Cornelissen G
    Sci Total Environ; 2021 Apr; 763():144034. PubMed ID: 33360959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.
    Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G
    J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of PFAS-contaminated soil with sewage sludge- and wood-based biochar sorbents.
    Sørmo E; Lade CBM; Zhang J; Asimakopoulos AG; Åsli GW; Hubert M; Goranov AI; Arp HPH; Cornelissen G
    Sci Total Environ; 2024 Apr; 922():170971. PubMed ID: 38408660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sorption of
    Ma FF; Zhao BW
    Huan Jing Ke Xue; 2017 Feb; 38(2):837-844. PubMed ID: 29964545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds.
    Tao J; Wu W; Lin D; Yang K
    Environ Pollut; 2024 Apr; 346():123583. PubMed ID: 38365081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of corn straw biochar application to sediments on the adsorption of 17α-ethinyl estradiol and perfluorooctane sulfonate at sediment-water interface.
    Guo W; Lu S; Shi J; Zhao X
    Ecotoxicol Environ Saf; 2019 Jun; 174():363-369. PubMed ID: 30849656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of sawdust biochar with water and wastewater treatment residuals for sorption of perfluorooctanesulfonic acid in water.
    Mer K; Arachchilage P; Tao W; Egiebor NO
    Chemosphere; 2024 Jun; 358():142160. PubMed ID: 38685330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.