These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37044147)
21. [Effect of COD/SO Qiang H; Li YY; Pei MF Huan Jing Ke Xue; 2018 Jul; 39(7):3443-3451. PubMed ID: 29962172 [TBL] [Abstract][Full Text] [Related]
22. Biofilm development during the start-up of a sulfate-reducing down-flow fluidized bed reactor at different COD/SO4(2-) ratios and HRT. Piña-Salazar EZ; Cervantes FJ; Meraz M; Celis LB Water Sci Technol; 2011; 64(4):910-6. PubMed ID: 22097079 [TBL] [Abstract][Full Text] [Related]
23. [Effect of COD/SO4(2-) ratio on the ecological characteristic in acidogenic sulfate-reducing reactor]. Ren N; Wang A Huan Jing Ke Xue; 2002 Jul; 23(4):52-6. PubMed ID: 12371103 [TBL] [Abstract][Full Text] [Related]
25. Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization. Guo J; Wang J; Qiu Y; Sun J; Jiang F Chemosphere; 2019 Dec; 236():124381. PubMed ID: 31545190 [TBL] [Abstract][Full Text] [Related]
26. COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters. Cetecioglu Z; Dolfing J; Taylor J; Purdy KJ; Eyice Ö Water Res; 2019 May; 155():444-454. PubMed ID: 30861382 [TBL] [Abstract][Full Text] [Related]
27. Effect of feeding strategy and COD/sulfate ratio on the removal of sulfate in an AnSBBR with recirculation of the liquid phase. Archilha NC; Canto CS; Ratusznei SM; Rodrigues JA; Zaiat M; Foresti E J Environ Manage; 2010 Aug; 91(8):1756-65. PubMed ID: 20413213 [TBL] [Abstract][Full Text] [Related]
28. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction? Guo J; Li Y; Sun J; Sun R; Zhou S; Duan J; Feng W; Liu G; Jiang F Water Res; 2021 Oct; 204():117628. PubMed ID: 34507021 [TBL] [Abstract][Full Text] [Related]
29. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies. Sahinkaya E J Hazard Mater; 2009 May; 164(1):105-13. PubMed ID: 18774640 [TBL] [Abstract][Full Text] [Related]
30. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Liu Z; Li L; Li Z; Tian X Environ Technol; 2018 Jul; 39(14):1814-1822. PubMed ID: 28592226 [TBL] [Abstract][Full Text] [Related]
31. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio. Barbosa LP; Costa PF; Bertolino SM; Silva JC; Guerra-Sá R; Leão VA; Teixeira MC World J Microbiol Biotechnol; 2014 Aug; 30(8):2171-80. PubMed ID: 24710619 [TBL] [Abstract][Full Text] [Related]
32. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters. Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212 [TBL] [Abstract][Full Text] [Related]
33. An assessment of sulfate reducing bacteria on treating sulfate-rich metal-laden wastewater from electroplating plant. Hu K; Xu D; Chen Y J Hazard Mater; 2020 Jul; 393():122376. PubMed ID: 32114127 [TBL] [Abstract][Full Text] [Related]
34. Anaerobic digestion of wastewater rich in sulfate and sulfide: effects of metallic waste addition and micro-aeration on process performance and methane production. Montalvo S; Huiliñir C; Borja R; Castillo A; Pereda I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(10):1035-1043. PubMed ID: 31188049 [TBL] [Abstract][Full Text] [Related]
35. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate. Byun IG; Lee TH; Kim YO; Song SK; Park TJ Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428 [TBL] [Abstract][Full Text] [Related]
36. Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor. Lu X; Zhen G; Ni J; Kubota K; Li YY Water Res; 2017 Jan; 108():137-150. PubMed ID: 27817890 [TBL] [Abstract][Full Text] [Related]
38. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells. Kuo WC; Shu TY J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525 [TBL] [Abstract][Full Text] [Related]
39. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle. Deng D; Lin LS Water Res; 2017 May; 114():210-217. PubMed ID: 28249212 [TBL] [Abstract][Full Text] [Related]
40. Biological sulfate removal from acrylic fiber manufacturing wastewater using a two-stage UASB reactor. Li J; Wang J; Luan Z; Ji Z; Yu L J Environ Sci (China); 2012; 24(2):343-50. PubMed ID: 22655398 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]