BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37045874)

  • 1. Quantum loss sensing with two-mode squeezed vacuum state under noisy and lossy environment.
    Park SI; Noh C; Lee C
    Sci Rep; 2023 Apr; 13(1):5936. PubMed ID: 37045874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on quantum imaging with time-integrated single-photon detection under realistic experimental conditions.
    Go BY; Lee C; Lee KG
    Sci Rep; 2022 Mar; 12(1):5338. PubMed ID: 35351945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entanglement-enhanced sensing in a lossy and noisy environment.
    Zhang Z; Mouradian S; Wong FN; Shapiro JH
    Phys Rev Lett; 2015 Mar; 114(11):110506. PubMed ID: 25839252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound for Gaussian-state quantum illumination using a direct photon measurement.
    Lee SY; Hwan Kim D; Jo Y; Jeong T; Kim Z; Kim DY
    Opt Express; 2023 Nov; 31(23):38977-38988. PubMed ID: 38017988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer.
    Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D
    Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entanglement-Assisted Absorption Spectroscopy.
    Shi H; Zhang Z; Pirandola S; Zhuang Q
    Phys Rev Lett; 2020 Oct; 125(18):180502. PubMed ID: 33196225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-insensitive amplifier gain estimation at Cramér-Rao bound for two-mode squeezed state of light.
    Wang H; Chen Z; Fu Z; Shi Y; Zhang X; Zhao C; Jin S; Jing J
    Opt Express; 2023 Apr; 31(9):13552-13565. PubMed ID: 37157240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum Mixed-State Discrimination for Noisy Entanglement-Enhanced Sensing.
    Zhuang Q; Zhang Z; Shapiro JH
    Phys Rev Lett; 2017 Jan; 118(4):040801. PubMed ID: 28186814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB.
    Heinze J; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Feb; 128(8):083606. PubMed ID: 35275673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase locking of squeezed vacuum generated by a single-pass optical parametric amplifier.
    Taguchi Y; Oguchi K; Xu Z; Cheon D; Takahashi S; Sano Y; Harashima F; Ozeki Y
    Opt Express; 2022 Feb; 30(5):8002-8014. PubMed ID: 35299551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum fisher information of an optomechanical force sensor driven by a squeezed vacuum field.
    Lee CW; Lee JH; Joo J; Seok H
    Opt Express; 2022 Jul; 30(14):25249-25261. PubMed ID: 36237059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment sensing and control for squeezed vacuum states of light.
    Schreiber E; Dooley KL; Vahlbruch H; Affeldt C; Bisht A; Leong JR; Lough J; Prijatelj M; Slutsky J; Was M; Wittel H; Danzmann K; Grote H
    Opt Express; 2016 Jan; 24(1):146-52. PubMed ID: 26832246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental quantum reading with photon counting.
    Ortolano G; Losero E; Pirandola S; Genovese M; Ruo-Berchera I
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold switching strategy for unambiguous state discrimination of quadrature phase-shift-keying coherent states under thermal noise.
    Guo C; Zhang Y; Wu T; Li K; Ran Y; Dong C
    Opt Express; 2022 Sep; 30(19):34043-34052. PubMed ID: 36242426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-Enabled Communication without a Phase Reference.
    Zhuang Q
    Phys Rev Lett; 2021 Feb; 126(6):060502. PubMed ID: 33635698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extract the Degradation Information in Squeezed States with Machine Learning.
    Hsieh HY; Chen YR; Wu HC; Chen HL; Ning J; Huang YC; Wu CM; Lee RK
    Phys Rev Lett; 2022 Feb; 128(7):073604. PubMed ID: 35244420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state.
    Zhang J; Zhang Z; Cen L; Yu M; Li S; Wang F; Zhao Y
    Opt Express; 2017 Oct; 25(21):24907-24916. PubMed ID: 29041164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Metrology of Noisy Spreading Channels.
    Górecki W; Riccardi A; Maccone L
    Phys Rev Lett; 2022 Dec; 129(24):240503. PubMed ID: 36563249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally controlled optical resonator for vacuum squeezed states separation.
    Nguyen C; Bréelle E; Barsuglia M; Capocasa E; De Laurentis M; Sequino V; Sorrentino F
    Appl Opt; 2022 Jun; 61(17):5226-5236. PubMed ID: 36256205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.