These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37045986)

  • 1. Ligand field tuning of d-orbital energies in metal-organic framework clusters.
    Diamond BG; Payne LI; Hendon CH
    Commun Chem; 2023 Apr; 6(1):67. PubMed ID: 37045986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic origins of photocatalytic activity in d0 metal organic frameworks.
    Nasalevich MA; Hendon CH; Santaclara JG; Svane K; van der Linden B; Veber SL; Fedin MV; Houtepen AJ; van der Veen MA; Kapteijn F; Walsh A; Gascon J
    Sci Rep; 2016 Mar; 6():23676. PubMed ID: 27020767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuned Hydrogen Bonding in Rare-Earth Metal-Organic Frameworks for Design of Optical and Electronic Properties: An Exemplar Study of Y-2,5-Dihydroxyterephthalic Acid.
    Vogel DJ; Nenoff TM; Rimsza JM
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4531-4539. PubMed ID: 31905286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the optical properties of the metal-organic framework UiO-66
    Treger M; Hannebauer A; Schaate A; Budde JL; Behrens P; Schneider AM
    Phys Chem Chem Phys; 2023 Feb; 25(8):6333-6341. PubMed ID: 36779311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap Modulation in Zr-Based Metal-Organic Frameworks by Mixed-Linker Approach.
    Cedeno RM; Cedeno R; Gapol MA; Lerdwiriyanupap T; Impeng S; Flood A; Bureekaew S
    Inorg Chem; 2021 Jun; 60(12):8908-8916. PubMed ID: 34109787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high refractive index UiO-66 framework derivatives
    Treger M; Hannebauer A; Behrens P; Schneider AM
    Phys Chem Chem Phys; 2023 Jun; 25(22):15391-15399. PubMed ID: 37232067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and Controlling the Dielectric Response of Metal-Organic Frameworks.
    Ryder MR; Donà L; Vitillo JG; Civalleri B
    Chempluschem; 2018 Apr; 83(4):308-316. PubMed ID: 31957274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning structural and electronic properties of metal-organic framework 5 by metal substitution and linker functionalization.
    Edzards J; Saßnick HD; Andreo JS; Cocchi C
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38726938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap modulation of functionalized metal-organic frameworks.
    Musho T; Li J; Wu N
    Phys Chem Chem Phys; 2014 Nov; 16(43):23646-53. PubMed ID: 25269595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization.
    Hendon CH; Tiana D; Fontecave M; Sanchez C; D'arras L; Sassoye C; Rozes L; Mellot-Draznieks C; Walsh A
    J Am Chem Soc; 2013 Jul; 135(30):10942-5. PubMed ID: 23841821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the structure and function of metal-organic frameworks via linker design.
    Lu W; Wei Z; Gu ZY; Liu TF; Park J; Park J; Tian J; Zhang M; Zhang Q; Gentle T; Bosch M; Zhou HC
    Chem Soc Rev; 2014 Aug; 43(16):5561-93. PubMed ID: 24604071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study.
    Hendrickx K; Vanpoucke DE; Leus K; Lejaeghere K; Van Yperen-De Deyne A; Van Speybroeck V; Van Der Voort P; Hemelsoet K
    Inorg Chem; 2015 Nov; 54(22):10701-10. PubMed ID: 26540517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating and Tuning Catalytic Sites on Zirconium- and Aluminum-Containing Nodes of Stable Metal-Organic Frameworks.
    Yang D; Gates BC
    Acc Chem Res; 2021 Apr; 54(8):1982-1991. PubMed ID: 33843190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linker Substituents Control the Thermodynamic Stability in Metal-Organic Frameworks.
    Novendra N; Marrett JM; Katsenis AD; Titi HM; Arhangelskis M; Friščić T; Navrotsky A
    J Am Chem Soc; 2020 Dec; 142(52):21720-21729. PubMed ID: 33326738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic effects due to organic linker-metal surface interactions: implications on screening of MOF-encapsulated catalysts.
    Schweitzer B; Archuleta C; Seong B; Anderson R; Gómez-Gualdrón DA
    Phys Chem Chem Phys; 2020 Jan; 22(4):2475-2487. PubMed ID: 31939944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerium Metal-Organic Framework for Photocatalysis.
    Wu XP; Gagliardi L; Truhlar DG
    J Am Chem Soc; 2018 Jun; 140(25):7904-7912. PubMed ID: 29807431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal Substitution as the Method of Modifying Electronic Structure of Metal-Organic Frameworks.
    Syzgantseva MA; Ireland CP; Ebrahim FM; Smit B; Syzgantseva OA
    J Am Chem Soc; 2019 Apr; 141(15):6271-6278. PubMed ID: 30915844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring of the electronic property of Zn-BTC metal-organic framework
    Degaga GD; Pandey R; Gupta C; Bharadwaj L
    RSC Adv; 2019 May; 9(25):14260-14267. PubMed ID: 35519341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.