These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 3704638)
1. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Balaban RS; Kantor HL; Katz LA; Briggs RW Science; 1986 May; 232(4754):1121-3. PubMed ID: 3704638 [TBL] [Abstract][Full Text] [Related]
2. Transmural high energy phosphate distribution and response to alterations in workload in the normal canine myocardium as studied with spatially localized 31P NMR spectroscopy. Robitaille PM; Merkle H; Lew B; Path G; Hendrich K; Lindstrom P; From AH; Garwood M; Bache RJ; Uğurbil K Magn Reson Med; 1990 Oct; 16(1):91-116. PubMed ID: 2255241 [TBL] [Abstract][Full Text] [Related]
3. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Hochachka PW; Clark CM; Holden JE; Stanley C; Ugurbil K; Menon RS Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1215-20. PubMed ID: 8577743 [TBL] [Abstract][Full Text] [Related]
4. Effect of hypothermia on high-energy phosphate stores and contractile function in supported isolated, blood perfused heart. Bui-Mong-Hung ; Schwartz K; Pernollet JC; Leandri J; de Mendonca M; Rey P; Hinglais J; Cachera JP Eur Surg Res; 1972; 4(2):140-52. PubMed ID: 5042926 [No Abstract] [Full Text] [Related]
5. Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. Katz LA; Koretsky AP; Balaban RS FEBS Lett; 1987 Sep; 221(2):270-6. PubMed ID: 3622766 [TBL] [Abstract][Full Text] [Related]
6. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [TBL] [Abstract][Full Text] [Related]
7. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Jacobus WE Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084 [TBL] [Abstract][Full Text] [Related]
8. [The significance of creatine phosphate and adenosine triphosphate in terms of energy production, transport and utilization in the healthy and insufficient heart muscle]. Nägle S Klin Wochenschr; 1970 Mar; 48(6):332-41. PubMed ID: 4938632 [No Abstract] [Full Text] [Related]
9. Functional compartmentation of ATP and creatine phosphate in heart muscle. Gudbjarnason S; Mathes P; Ravens KG J Mol Cell Cardiol; 1970 Sep; 1(3):325-39. PubMed ID: 5519941 [No Abstract] [Full Text] [Related]
10. Measurement of changes in high-energy phosphates in the cardiac cycle using gated 31P nuclear magnetic renonance. Fossel ET; Morgan HE; Ingwall JS Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3654-8. PubMed ID: 6932041 [TBL] [Abstract][Full Text] [Related]
11. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption. van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328 [TBL] [Abstract][Full Text] [Related]
12. Functional and energetic consequences of chronic myocardial creatine depletion by beta-guanidinopropionate in perfused hearts and in intact rats. Neubauer S; Hu K; Horn M; Remkes H; Hoffmann KD; Schmidt C; Schmidt TJ; Schnackerz K; Ertl G J Mol Cell Cardiol; 1999 Oct; 31(10):1845-55. PubMed ID: 10525422 [TBL] [Abstract][Full Text] [Related]
13. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery. Schaefer S; Carr LJ; Kreutzer U; Jue T Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416 [TBL] [Abstract][Full Text] [Related]
14. Regulation of heart creatine kinase. Ingwall JS; Bittl JA Basic Res Cardiol; 1987; 82 Suppl 2():93-101. PubMed ID: 3663033 [TBL] [Abstract][Full Text] [Related]
15. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. Portman MA; Standaert TA; Ning XH J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181 [TBL] [Abstract][Full Text] [Related]
16. High-performance liquid chromatographic method for the simultaneous determination of myocardial creatine phosphate and adenosine nucleotides. Bedford GK; Chiong MA J Chromatogr; 1984 Jan; 305(1):183-7. PubMed ID: 6707142 [No Abstract] [Full Text] [Related]
17. Transmural saturation transfer analysis of the creatine kinase system in the mammalian heart. Robitaille PM; Abduljalil A; Rath D; Zhang H; Hamlin RL Magn Reson Med; 1993 Jul; 30(1):4-10. PubMed ID: 8371673 [TBL] [Abstract][Full Text] [Related]
18. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Nunnally RL; Hollis DP Biochemistry; 1979 Aug; 18(16):3642-6. PubMed ID: 476074 [TBL] [Abstract][Full Text] [Related]
19. Effects of coronary perfusion during myocardial hypoxia. Comparison of metabolic and hemodynamic events with global ischemia and hypoxemia. Liedtke AJ J Thorac Cardiovasc Surg; 1976 May; 71(5):726-35. PubMed ID: 1263557 [TBL] [Abstract][Full Text] [Related]
20. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle. Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]