BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37046576)

  • 1. Automatic Kidney Segmentation Method Based on an Enhanced Generative Adversarial Network.
    Shan T; Ying Y; Song G
    Diagnostics (Basel); 2023 Apr; 13(7):. PubMed ID: 37046576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks.
    Wang W; Wang G; Wu X; Ding X; Cao X; Wang L; Zhang J; Wang P
    Clin Imaging; 2021 Feb; 70():1-9. PubMed ID: 33120283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SegAN: Adversarial Network with Multi-scale L
    Xue Y; Xu T; Zhang H; Long LR; Huang X
    Neuroinformatics; 2018 Oct; 16(3-4):383-392. PubMed ID: 29725916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UENet: A Novel Generative Adversarial Network for Angiography Image Segmentation.
    Shi X; Du T; Chen S; Zhang H; Guan C; Xu B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1612-1615. PubMed ID: 33018303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Liver Image Segmentation Using Generative Adversarial Networks Based on Feature Restoration.
    He R; Xu S; Liu Y; Li Q; Liu Y; Zhao N; Yuan Y; Zhang H
    Front Med (Lausanne); 2021; 8():794969. PubMed ID: 35071275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks.
    Arafati A; Morisawa D; Avendi MR; Amini MR; Assadi RA; Jafarkhani H; Kheradvar A
    J R Soc Interface; 2020 Aug; 17(169):20200267. PubMed ID: 32811299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Adversarial Network Architecture Using 2D U-Net Models for Segmentation of Left Ventricle from Cine Cardiac MRI.
    Upendra RR; Dangi S; Linte CA
    Funct Imaging Model Heart; 2019 Jun; 11504():415-424. PubMed ID: 32699845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level.
    Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F
    Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesion Segmentation in Gastroscopic Images Using Generative Adversarial Networks.
    Sun Y; Li Y; Wang P; He D; Wang Z
    J Digit Imaging; 2022 Jun; 35(3):459-468. PubMed ID: 35132523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Generative Adversarial Network Fused with Dual-Attention Mechanism and Its Application in Multitarget Image Fine Segmentation.
    Yin J; Zhou Z; Xu S; Yang R; Liu K
    Comput Intell Neurosci; 2021; 2021():2464648. PubMed ID: 34961814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Meniscus Segmentation Using Adversarial Learning-Based Segmentation Network with Object-Aware Map in Knee MR Images.
    Jeon U; Kim H; Hong H; Wang J
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34573953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MB-FSGAN: Joint segmentation and quantification of kidney tumor on CT by the multi-branch feature sharing generative adversarial network.
    Ruan Y; Li D; Marshall H; Miao T; Cossetto T; Chan I; Daher O; Accorsi F; Goela A; Li S
    Med Image Anal; 2020 Aug; 64():101721. PubMed ID: 32554169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
    Chen H; Yan S; Xie M; Ye Y; Ye Y; Zhu D; Su L; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106608. PubMed ID: 35063713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.