These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 37046988)
1. Tissue-Specific Transcriptome and Metabolome Analysis Reveals the Response Mechanism of Hong B; Zhou B; Peng Z; Yao M; Wu J; Wu X; Guan C; Guan M Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37046988 [TBL] [Abstract][Full Text] [Related]
2. Yield, cell structure and physiological and biochemical characteristics of rapeseed under waterlogging stress. Hong B; Zhou B; Zhao D; Liao L; Chang T; Wu X; Wu J; Yao M; Chen H; Mao J; Guan C; Guan M BMC Plant Biol; 2024 Oct; 24(1):941. PubMed ID: 39385111 [TBL] [Abstract][Full Text] [Related]
3. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). Song J; Chen Y; Jiang G; Zhao J; Wang W; Hong X J Plant Physiol; 2023 Dec; 291():154120. PubMed ID: 37935062 [TBL] [Abstract][Full Text] [Related]
4. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed ( Liu X; Wei R; Tian M; Liu J; Ruan Y; Sun C; Liu C Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362332 [TBL] [Abstract][Full Text] [Related]
5. Root system architecture change in response to waterlogging stress in a 448 global collection of rapeseeds (Brassica napus L.). Ullah N; Qian F; Geng R; Xue Y; Guan W; Ji G; Li H; Huang Q; Cai G; Yan G; Wu X Planta; 2024 Mar; 259(5):95. PubMed ID: 38512412 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. Wang F; Zhou Z; Liu X; Zhu L; Guo B; Lv C; Zhu J; Chen ZH; Xu R BMC Plant Biol; 2024 May; 24(1):385. PubMed ID: 38724918 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome Profile Analysis of Winter Rapeseed ( Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741 [TBL] [Abstract][Full Text] [Related]
8. Conversion of lipids into carbohydrates rescues energy insufficiency in rapeseed germination under waterlogging stress. Yang H; Bai C; Ai X; Yu H; Xu Z; Wang J; Kuai J; Zhao J; Wang B; Zhou G Physiol Plant; 2024; 176(5):e14576. PubMed ID: 39400914 [TBL] [Abstract][Full Text] [Related]
9. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. Ding LN; Liu R; Li T; Li M; Liu XY; Wang WJ; Yu YK; Cao J; Tan XL Biotechnol Biofuels Bioprod; 2022 May; 15(1):55. PubMed ID: 35596185 [TBL] [Abstract][Full Text] [Related]
10. Integrated methylome and transcriptome analysis unravel the cold tolerance mechanism in winter rapeseed(Brassica napus L.). Zheng G; Dong X; Wei J; Liu Z; Aslam A; Cui J; Li H; Wang Y; Tian H; Cao X BMC Plant Biol; 2022 Aug; 22(1):414. PubMed ID: 36008781 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the Mechanism of Wood Vinegar and Butyrolactone Promoting Rapeseed Growth and Improving Low-Temperature Stress Resistance Based on Transcriptome and Metabolomics. Zhu K; Liu J; Lyu A; Luo T; Chen X; Peng L; Hu L Int J Mol Sci; 2024 Sep; 25(17):. PubMed ID: 39273704 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Profiles Reveal Changes in the Leaves and Roots of Rapeseed ( Shen X; Yang L; Han P; Gu C; Li Y; Liao X; Qin L Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628591 [TBL] [Abstract][Full Text] [Related]
14. Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Men S; Chen H; Chen S; Zheng S; Shen X; Wang C; Yang Z; Liu D Sci Rep; 2020 Jun; 10(1):10201. PubMed ID: 32576948 [TBL] [Abstract][Full Text] [Related]
15. The Transcriptome of Brassica napus L. Roots under Waterlogging at the Seedling Stage. Zou X; Tan X; Hu C; Zeng L; Lu G; Fu G; Cheng Y; Zhang X Int J Mol Sci; 2013 Jan; 14(2):2637-51. PubMed ID: 23358252 [TBL] [Abstract][Full Text] [Related]
16. The roles of cell wall polysaccharides in response to waterlogging stress in Brassica napus L. root. Li J; Zhang Y; Chen Y; Wang Y; Zhou Z; Tu J; Guo L; Yao X BMC Biol; 2024 Sep; 22(1):191. PubMed ID: 39218874 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. Tong J; Walk TC; Han P; Chen L; Shen X; Li Y; Gu C; Xie L; Hu X; Liao X; Qin L BMC Plant Biol; 2020 Oct; 20(1):464. PubMed ID: 33036562 [TBL] [Abstract][Full Text] [Related]
18. Role of tillage measures in mitigating waterlogging damage in rapeseed. Tian X; Li Z; Liu Y; Li W BMC Plant Biol; 2023 May; 23(1):231. PubMed ID: 37122012 [TBL] [Abstract][Full Text] [Related]
19. Catalase (CAT) Gene Family in Rapeseed ( Raza A; Su W; Gao A; Mehmood SS; Hussain MA; Nie W; Lv Y; Zou X; Zhang X Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924156 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress. Luo Y; Teng S; Yin H; Zhang S; Tuo X; Tran LP Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]