These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 37047235)

  • 1. Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects.
    Naeem M; Alkhnbashi OS
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Tools and Resources Supporting CRISPR-Cas Experiments.
    Sledzinski P; Nowaczyk M; Olejniczak M
    Cells; 2020 May; 9(5):. PubMed ID: 32455882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing.
    Lee CM; Cradick TJ; Fine EJ; Bao G
    Mol Ther; 2016 Mar; 24(3):475-87. PubMed ID: 26750397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments.
    Heigwer F; Boutros M
    Methods Mol Biol; 2021; 2162():3-22. PubMed ID: 32926374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of CRISPR/Cas Systems for Precise Genome Editing.
    Hryhorowicz M; Lipiński D; Zeyland J
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of CRISPR/Cas9 sgRNA Design Tools.
    Cui Y; Xu J; Cheng M; Liao X; Peng S
    Interdiscip Sci; 2018 Jun; 10(2):455-465. PubMed ID: 29644494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prediction of CRISPR/Cas9 off-target activity using multi-scale convolutional neural network].
    Xie H; Huang L; Luo Y; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):858-876. PubMed ID: 38545983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating Cas9 activity for precision gene editing.
    Uslu M; Siyah P; Harvey AJ; Kocabaş F
    Prog Mol Biol Transl Sci; 2021; 181():89-127. PubMed ID: 34127203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing.
    Hasanzadeh A; Noori H; Jahandideh A; Haeri Moghaddam N; Kamrani Mousavi SM; Nourizadeh H; Saeedi S; Karimi M; Hamblin MR
    ACS Appl Bio Mater; 2022 Feb; 5(2):413-437. PubMed ID: 35040621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints.
    Chen Q; Chuai G; Zhang H; Tang J; Duan L; Guan H; Li W; Li W; Wen J; Zuo E; Zhang Q; Liu Q
    Nat Commun; 2023 Nov; 14(1):7521. PubMed ID: 37980345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system.
    Yang Z; Zhang Z; Li J; Chen W; Liu C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas bioinformatics.
    Alkhnbashi OS; Meier T; Mitrofanov A; Backofen R; Voß B
    Methods; 2020 Feb; 172():3-11. PubMed ID: 31326596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Validation of CRISPR/Cas9 Off-Target Activity in Hematopoietic Stem and Progenitor Cells.
    Park SH; Lee CM; Bao G
    Methods Mol Biol; 2022; 2429():281-306. PubMed ID: 35507169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Apr; 50(7):3616-3637. PubMed ID: 35349718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.
    Wang J; Zhang X; Cheng L; Luo Y
    RNA Biol; 2020 Jan; 17(1):13-22. PubMed ID: 31533522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General guidelines for CRISPR/Cas-based genome editing in plants.
    Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U
    Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.