BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 37047573)

  • 1. Abiotic Stress in Crop Production.
    Kopecká R; Kameniarová M; Černý M; Brzobohatý B; Novák J
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone crosstalk.
    Tiwari S; Gupta SC; Chauhan PS; Lata C
    Plant Cell Rep; 2021 Jan; 40(1):143-155. PubMed ID: 33084964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants.
    Aloo BN; Dessureault-Rompré J; Tripathi V; Nyongesa BO; Were BA
    Front Microbiol; 2023; 14():1171104. PubMed ID: 37455718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.
    Chauhan H; Khurana N; Agarwal P; Khurana JP; Khurana P
    PLoS One; 2013; 8(11):e79577. PubMed ID: 24265778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of wheat myo-inositol oxygenase promoter under different abiotic stress conditions in Arabidopsis thaliana.
    Alok A; Kaur J; Tiwari S
    Biotechnol Lett; 2020 Oct; 42(10):2035-2047. PubMed ID: 32681381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat Heat Shock Factor TaHsfA6f Increases ABA Levels and Enhances Tolerance to Multiple Abiotic Stresses in Transgenic Plants.
    Bi H; Zhao Y; Li H; Liu W
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoenabled Enhancement of Plant Tolerance to Heat and Drought Stress on Molecular Response.
    Zhao W; Wu Z; Amde M; Zhu G; Wei Y; Zhou P; Zhang Q; Song M; Tan Z; Zhang P; Rui Y; Lynch I
    J Agric Food Chem; 2023 Dec; 71(51):20405-20418. PubMed ID: 38032362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citric Acid-Mediated Abiotic Stress Tolerance in Plants.
    Tahjib-Ul-Arif M; Zahan MI; Karim MM; Imran S; Hunter CT; Islam MS; Mia MA; Hannan MA; Rhaman MS; Hossain MA; Brestic M; Skalicky M; Murata Y
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness.
    Egamberdieva D; Wirth SJ; Alqarawi AA; Abd Allah EF; Hashem A
    Front Microbiol; 2017; 8():2104. PubMed ID: 29163398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis.
    Karan R; Subudhi PK
    BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The power of seaweeds as plant biostimulants to boost crop production under abiotic stress.
    Deolu-Ajayi AO; van der Meer IM; van der Werf A; Karlova R
    Plant Cell Environ; 2022 Sep; 45(9):2537-2553. PubMed ID: 35815342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Metabolomics: An Overview of the Role of Primary and Secondary Metabolites against Different Environmental Stress Factors.
    Salam U; Ullah S; Tang ZH; Elateeq AA; Khan Y; Khan J; Khan A; Ali S
    Life (Basel); 2023 Mar; 13(3):. PubMed ID: 36983860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress.
    Rhaman MS; Imran S; Karim MM; Chakrobortty J; Mahamud MA; Sarker P; Tahjib-Ul-Arif M; Robin AHK; Ye W; Murata Y; Hasanuzzaman M
    Plant Cell Rep; 2021 Aug; 40(8):1451-1469. PubMed ID: 33839877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic Stress Signaling in Wheat - An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat.
    Abhinandan K; Skori L; Stanic M; Hickerson NMN; Jamshed M; Samuel MA
    Front Plant Sci; 2018; 9():734. PubMed ID: 29942321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brassinosteroid Signaling Pathways: Insights into Plant Responses under Abiotic Stress.
    Khan TA; Kappachery S; Karumannil S; AlHosani M; Almansoori N; Almansoori H; Yusuf M; Tran LP; Gururani MA
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the molecular mechanism of anther development under abiotic stresses.
    Zhang Z; Hu M; Xu W; Wang Y; Huang K; Zhang C; Wen J
    Plant Mol Biol; 2021 Jan; 105(1-2):1-10. PubMed ID: 32930929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.