These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 37047675)
1. The Role and Mechanism of Hydrogen-Rich Water in the Wang X; An Z; Liao J; Ran N; Zhu Y; Ren S; Meng X; Cui N; Yu Y; Fan H Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047675 [TBL] [Abstract][Full Text] [Related]
2. Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. Li Q; Yu B; Gao Y; Dai AH; Bai JG J Plant Physiol; 2011 Jun; 168(9):927-34. PubMed ID: 21353326 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analysis of grafting to improve chilling tolerance of cucumber. Fu X; Lv CY; Zhang YY; Ai XZ; Bi HG Protoplasma; 2023 Sep; 260(5):1349-1364. PubMed ID: 36949344 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen gas promotes the adventitious rooting in cucumber under cadmium stress. Wang B; Bian B; Wang C; Li C; Fang H; Zhang J; Huang D; Huo J; Liao W PLoS One; 2019; 14(2):e0212639. PubMed ID: 30785953 [TBL] [Abstract][Full Text] [Related]
5. Glutathione is required for nitric oxide-induced chilling tolerance by synergistically regulating antioxidant system, polyamine synthesis, and mitochondrial function in cucumber (Cucumis sativus L.). Yang Z; Wang X; Gao C; Wu P; Ahammed GJ; Liu H; Chen S; Cui J Plant Physiol Biochem; 2024 Sep; 214():108878. PubMed ID: 38968841 [TBL] [Abstract][Full Text] [Related]
6. Impact of salicylic acid on the antioxidant enzyme system and hydrogen peroxide production in Cucumis sativus under chilling stress. Zhang WP; Jiang B; Lou LN; Lu MH; Yang M; Chen JF Z Naturforsch C J Biosci; 2011; 66(7-8):413-22. PubMed ID: 21950167 [TBL] [Abstract][Full Text] [Related]
7. Responses of antioxidative enzymes and gene expression in Oryza sativa L and Cucumis sativus L seedlings to microcystins stress. Gu Y; Liang C Ecotoxicol Environ Saf; 2020 Apr; 193():110351. PubMed ID: 32109583 [TBL] [Abstract][Full Text] [Related]
8. Physiological response and transcription profiling analysis reveal the role of glutathione in H Liu F; Zhang X; Cai B; Pan D; Fu X; Bi H; Ai X Plant Sci; 2020 Feb; 291():110363. PubMed ID: 31928658 [TBL] [Abstract][Full Text] [Related]
9. H Zhang X; Zhang Y; Xu C; Liu K; Bi H; Ai X Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884713 [TBL] [Abstract][Full Text] [Related]
10. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Dong CJ; Li L; Shang QM; Liu XY; Zhang ZG Planta; 2014 Oct; 240(4):687-700. PubMed ID: 25034826 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner. Lin Y; Zhang W; Qi F; Cui W; Xie Y; Shen W J Plant Physiol; 2014 Jan; 171(2):1-8. PubMed ID: 24331413 [TBL] [Abstract][Full Text] [Related]
12. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. Fu X; Ma L; Gui R; Ashraf U; Li Y; Yang X; Zhang J; Imran M; Tang X; Tian H; Mo Z Int J Phytoremediation; 2021; 23(11):1203-1211. PubMed ID: 33617358 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. Zhu Y; Liao W; Niu L; Wang M; Ma Z BMC Plant Biol; 2016 Jun; 16(1):146. PubMed ID: 27352869 [TBL] [Abstract][Full Text] [Related]
14. Exogenous Melatonin Improves Antioxidant Defense in Cucumber Seeds (Cucumis sativus L.) Germinated under Chilling Stress. Marta B; Szafrańska K; Posmyk MM Front Plant Sci; 2016; 7():575. PubMed ID: 27200048 [TBL] [Abstract][Full Text] [Related]
15. Red and blue light function antagonistically to regulate cadmium tolerance by modulating the photosynthesis,antioxidant defense system and Cd uptake in cucumber(Cucumis sativus L.). Guo Z; Lv J; Zhang H; Hu C; Qin Y; Dong H; Zhang T; Dong X; Du N; Piao F J Hazard Mater; 2022 May; 429():128412. PubMed ID: 35236029 [TBL] [Abstract][Full Text] [Related]
16. Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide. Turan M; Ekinci M; Kul R; Boynueyri FG; Yildirim E J Plant Res; 2022 May; 135(3):517-529. PubMed ID: 35445911 [TBL] [Abstract][Full Text] [Related]
17. Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Semida WM; Hemida KA; Rady MM Ecotoxicol Environ Saf; 2018 Jun; 154():171-179. PubMed ID: 29471279 [TBL] [Abstract][Full Text] [Related]
18. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress. Zhang Y; Du N; Wang L; Zhang H; Zhao J; Sun G; Wang P Environ Sci Pollut Res Int; 2015 Mar; 22(5):3477-88. PubMed ID: 25242588 [TBL] [Abstract][Full Text] [Related]
19. Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Ding X; Jiang Y; He L; Zhou Q; Yu J; Hui D; Huang D Sci Rep; 2016 Oct; 6():35424. PubMed ID: 27752105 [TBL] [Abstract][Full Text] [Related]
20. Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification. Liu N; Li J; Lv J; Yu J; Xie J; Wu Y; Tang Z Ecotoxicol Environ Saf; 2021 Jul; 217():112248. PubMed ID: 33901782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]