BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 37047778)

  • 1. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling.
    Grant AH; Rodriguez AC; Rodriguez Moncivais OJ; Sun S; Li L; Mohl JE; Leung MY; Kirken RA; Rodriguez G
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation.
    Liu KD; Gaffen SL; Goldsmith MA; Greene WC
    Curr Biol; 1997 Nov; 7(11):817-26. PubMed ID: 9382798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.
    Lupardus PJ; Ultsch M; Wallweber H; Bir Kohli P; Johnson AR; Eigenbrot C
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8025-30. PubMed ID: 24843152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors.
    Springuel L; Hornakova T; Losdyck E; Lambert F; Leroy E; Constantinescu SN; Flex E; Tartaglia M; Knoops L; Renauld JC
    Blood; 2014 Dec; 124(26):3924-31. PubMed ID: 25352124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperactivation of Oncogenic JAK3 Mutants Depend on ATP Binding to the Pseudokinase Domain.
    Raivola J; Hammarén HM; Virtanen AT; Bulleeraz V; Ward AC; Silvennoinen O
    Front Oncol; 2018; 8():560. PubMed ID: 30560087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine Kinase 2-mediated Signal Transduction in T Lymphocytes Is Blocked by Pharmacological Stabilization of Its Pseudokinase Domain.
    Tokarski JS; Zupa-Fernandez A; Tredup JA; Pike K; Chang C; Xie D; Cheng L; Pedicord D; Muckelbauer J; Johnson SR; Wu S; Edavettal SC; Hong Y; Witmer MR; Elkin LL; Blat Y; Pitts WJ; Weinstein DS; Burke JR
    J Biol Chem; 2015 Apr; 290(17):11061-74. PubMed ID: 25762719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delineation of the regions of interleukin-2 (IL-2) receptor beta chain important for association of Jak1 and Jak3. Jak1-independent functional recruitment of Jak3 to Il-2Rbeta.
    Zhu MH; Berry JA; Russell SM; Leonard WJ
    J Biol Chem; 1998 Apr; 273(17):10719-25. PubMed ID: 9553136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Small Molecule Tyrosine Kinase 2 Pseudokinase Ligands Block Cytokine-Induced TYK2-Mediated Signaling Pathways.
    Zhou Y; Li X; Shen R; Wang X; Zhang F; Liu S; Li D; Liu J; Li P; Yan Y; Dong P; Zhang Z; Wu H; Zhuang L; Chowdhury R; Miller M; Issa M; Mao Y; Chen H; Feng J; Li J; Bai C; He F; Tao W
    Front Immunol; 2022; 13():884399. PubMed ID: 35693820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction.
    Saharinen P; Silvennoinen O
    J Biol Chem; 2002 Dec; 277(49):47954-63. PubMed ID: 12351625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers.
    Constantinescu SN; Leroy E; Gryshkova V; Pecquet C; Dusa A
    Biochem Soc Trans; 2013 Aug; 41(4):1048-54. PubMed ID: 23863177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of Janus kinase trans-activation.
    Caveney NA; Saxton RA; Waghray D; Glassman CR; Tsutsumi N; Hubbard SR; Garcia KC
    Cell Rep; 2023 Mar; 42(3):112201. PubMed ID: 36867534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases.
    Roskoski R
    Pharmacol Res; 2016 Sep; 111():784-803. PubMed ID: 27473820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential substrate recognition capabilities of Janus family protein tyrosine kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery.
    Witthuhn BA; Williams MD; Kerawalla H; Uckun FM
    Leuk Lymphoma; 1999 Jan; 32(3-4):289-97. PubMed ID: 10037026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Analysis of Janus Tyrosine Kinase Variants in Hematological Malignancies: Implications for Drug Development and Opportunities for Novel Therapeutic Strategies.
    Rodriguez Moncivais OJ; Chavez SA; Estrada Jimenez VH; Sun S; Li L; Kirken RA; Rodriguez G
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Amido pyrrolopyrazine JAK kinase inhibitors: development of a JAK3 vs JAK1 selective inhibitor and evaluation in cellular and in vivo models.
    Soth M; Hermann JC; Yee C; Alam M; Barnett JW; Berry P; Browner MF; Frank K; Frauchiger S; Harris S; He Y; Hekmat-Nejad M; Hendricks T; Henningsen R; Hilgenkamp R; Ho H; Hoffman A; Hsu PY; Hu DQ; Itano A; Jaime-Figueroa S; Jahangir A; Jin S; Kuglstatter A; Kutach AK; Liao C; Lynch S; Menke J; Niu L; Patel V; Railkar A; Roy D; Shao A; Shaw D; Steiner S; Sun Y; Tan SL; Wang S; Vu MD
    J Med Chem; 2013 Jan; 56(1):345-56. PubMed ID: 23214979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.