BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37047812)

  • 1. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro.
    Nicolaus HF; Klonisch T; Paulsen F; Garreis F
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells.
    Glogowska A; Kunanuvat U; Stetefeld J; Patel TR; Thanasupawat T; Krcek J; Weber E; Wong GW; Del Bigio MR; Hoang-Vu C; Hombach-Klonisch S; Klonisch T
    J Pathol; 2013 Dec; 231(4):466-79. PubMed ID: 24014093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells.
    Glogowska A; Thanasupawat T; Beiko J; Pitz M; Hombach-Klonisch S; Klonisch T
    Mol Oncol; 2022 Jan; 16(2):368-387. PubMed ID: 33960104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxin 2 is functional at the ocular surface and promotes corneal wound healing.
    Hampel U; Klonisch T; Makrantonaki E; Sel S; Schulze U; Garreis F; Seltmann H; Zouboulis CC; Paulsen FP
    Invest Ophthalmol Vis Sci; 2012 Nov; 53(12):7780-90. PubMed ID: 23111608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C1q/TNF-related peptide 8 (CTRP8) promotes temozolomide resistance in human glioblastoma.
    Thanasupawat T; Glogowska A; Burg M; Krcek J; Beiko J; Pitz M; Zhang GJ; Hombach-Klonisch S; Klonisch T
    Mol Oncol; 2018 Sep; 12(9):1464-1479. PubMed ID: 29949238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment.
    Krishnan SN; Thanasupawat T; Arreza L; Wong GW; Sfanos K; Trock B; Arock M; Shah GG; Glogowska A; Ghavami S; Hombach-Klonisch S; Klonisch T
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166681. PubMed ID: 36921737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural commonality of C1q TNF-related proteins and their potential to activate relaxin/insulin-like family peptide receptor 1 signalling pathways in cancer cells.
    Klonisch T; Glogowska A; Thanasupawat T; Burg M; Krcek J; Pitz M; Jaggupilli A; Chelikani P; Wong GW; Hombach-Klonisch S
    Br J Pharmacol; 2017 May; 174(10):1025-1033. PubMed ID: 27443788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RXFP1 is Targeted by Complement C1q Tumor Necrosis Factor-Related Factor 8 in Brain Cancer.
    Thanasupawat T; Glogowska A; Burg M; Wong GW; Hoang-Vu C; Hombach-Klonisch S; Klonisch T
    Front Endocrinol (Lausanne); 2015; 6():127. PubMed ID: 26322020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin-like factor 3 promotes wound healing at the ocular surface.
    Hampel U; Klonisch T; Sel S; Schulze U; Garreis F; Seitmann H; Zouboulis CC; Paulsen FP
    Endocrinology; 2013 Jun; 154(6):2034-45. PubMed ID: 23539510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging roles for the relaxin/RXFP1 system in cancer therapy.
    Thanasupawat T; Glogowska A; Nivedita-Krishnan S; Wilson B; Klonisch T; Hombach-Klonisch S
    Mol Cell Endocrinol; 2019 May; 487():85-93. PubMed ID: 30763603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.
    Wu QP; Zhang L; Shao XX; Wang JH; Gao Y; Xu ZG; Liu YL; Guo ZY
    Amino Acids; 2016 Apr; 48(4):1099-1107. PubMed ID: 26767372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The consequences of manipulating relaxin family peptide receptor 1 (RXFP1) level in ovarian cancer cells.
    Domińska K; Urbanek KA; Kowalska K; Habrowska-Górczyńska DE; Kozieł MJ; Ochędalski T; Piastowska-Ciesielska AW
    Reprod Biol; 2024 Jun; 24(2):100864. PubMed ID: 38640630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat.
    Filonzi M; Cardoso LC; Pimenta MT; Queiróz DB; Avellar MC; Porto CS; Lazari MF
    Reprod Biol Endocrinol; 2007 Jul; 5():29. PubMed ID: 17623071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular, biochemical and functional characterizations of C1q/TNF family members: adipose-tissue-selective expression patterns, regulation by PPAR-gamma agonist, cysteine-mediated oligomerizations, combinatorial associations and metabolic functions.
    Wong GW; Krawczyk SA; Kitidis-Mitrokostas C; Revett T; Gimeno R; Lodish HF
    Biochem J; 2008 Dec; 416(2):161-77. PubMed ID: 18783346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor.
    Valkovic AL; Leckey MB; Whitehead AR; Hossain MA; Inoue A; Kocan M; Bathgate RAD
    Pharmacol Res Perspect; 2018 Oct; 6(5):e00432. PubMed ID: 30263124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of beta-arrestin recruitment.
    Callander GE; Thomas WG; Bathgate RA
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1058-66. PubMed ID: 19279230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis.
    Hoare BL; Kocan M; Bruell S; Scott DJ; Bathgate RAD
    Pharmacol Res Perspect; 2019 Aug; 7(4):e00513. PubMed ID: 31384473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.
    Scott DJ; Rosengren KJ; Bathgate RA
    Mol Endocrinol; 2012 Nov; 26(11):1896-906. PubMed ID: 22973049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxin signaling activates peroxisome proliferator-activated receptor gamma.
    Singh S; Bennett RG
    Mol Cell Endocrinol; 2010 Feb; 315(1-2):239-45. PubMed ID: 19712722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor-independent modulation of TGF-β-induced pro-fibrotic pathways by relaxin-2 in human primary tubular epithelial cells.
    Grampp S; Goppelt-Struebe M
    Cell Tissue Res; 2018 Dec; 374(3):619-627. PubMed ID: 30078103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.