These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Kinetics of Flavoenzyme-Catalyzed Reduction of Tirapazamine Derivatives: Implications for Their Prooxidant Cytotoxicity. Nemeikaitė-Čėnienė A; Šarlauskas J; Jonušienė V; Marozienė A; Misevičienė L; Yantsevich AV; Čėnas N Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31533349 [TBL] [Abstract][Full Text] [Related]
3. Adaptation of human tumor cells to tirapazamine under aerobic conditions: implications of increased antioxidant enzyme activity to mechanism of aerobic cytotoxicity. Elwell JH; Siim BG; Evans JW; Brown JM Biochem Pharmacol; 1997 Jul; 54(2):249-57. PubMed ID: 9271329 [TBL] [Abstract][Full Text] [Related]
4. Aerobic Cytotoxicity of Aromatic Nemeikaitė-Čėnienė A; Šarlauskas J; Misevičienė L; Marozienė A; Jonušienė V; Lesanavičius M; Čėnas N Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228195 [TBL] [Abstract][Full Text] [Related]
5. New insights into the antimicrobial action and protective therapeutic effect of tirapazamine towards Escherichia coli-infected mice. Wu Z; Wang Y; Li L; Zhen S; Du H; Wang Z; Xiao S; Wu J; Zhu L; Shen J; Wang Z Int J Antimicrob Agents; 2023 Sep; 62(3):106923. PubMed ID: 37433388 [TBL] [Abstract][Full Text] [Related]
6. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. Saunders MP; Patterson AV; Chinje EC; Harris AL; Stratford IJ Br J Cancer; 2000 Feb; 82(3):651-6. PubMed ID: 10682679 [TBL] [Abstract][Full Text] [Related]
7. Subcellular Location of Tirapazamine Reduction Dramatically Affects Aerobic but Not Anoxic Cytotoxicity. Guise CP; Abbattista MR; Anderson RF; Li D; Taghipouran R; Tsai A; Lee SJ; Smaill JB; Denny WA; Hay MP; Wilson WR; Hicks KO; Patterson AV Molecules; 2020 Oct; 25(21):. PubMed ID: 33105798 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of tirapazamine by multiple reductases in the nucleus. Delahoussaye YM; Evans JW; Brown JM Biochem Pharmacol; 2001 Nov; 62(9):1201-9. PubMed ID: 11705453 [TBL] [Abstract][Full Text] [Related]
9. Selective potentiation of the hypoxic cytotoxicity of tirapazamine by its 1-N-oxide metabolite SR 4317. Siim BG; Pruijn FB; Sturman JR; Hogg A; Hay MP; Brown JM; Wilson WR Cancer Res; 2004 Jan; 64(2):736-42. PubMed ID: 14744792 [TBL] [Abstract][Full Text] [Related]
10. Putative electron-affinic radiosensitizers and markers of hypoxic tissue: Synthesis and preliminary in vitro biological characterization of C3-amino-substituted benzotriazine dioxides (BTDOs). Elsaidi HR; Yang XH; Ahmadi F; Weinfeld M; Wiebe LI; Kumar P Eur J Med Chem; 2019 Mar; 165():216-224. PubMed ID: 30684798 [TBL] [Abstract][Full Text] [Related]
11. Initiation of DNA strand cleavage by 1,2,4-benzotriazine 1,4-dioxide antitumor agents: mechanistic insight from studies of 3-methyl-1,2,4-benzotriazine 1,4-dioxide. Junnotula V; Sarkar U; Sinha S; Gates KS J Am Chem Soc; 2009 Jan; 131(3):1015-24. PubMed ID: 19117394 [TBL] [Abstract][Full Text] [Related]
12. An investigation of the molecular basis for the synergistic interaction of tirapazamine and cisplatin. Goldberg Z; Evans J; Birrell G; Brown JM Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):175-82. PubMed ID: 11163512 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity of Tirapazamine (3-Amino-1,2,4-benzotriazine-1,4-dioxide)-Induced DNA Damage in Chicken DT40 Cells. Moriwaki T; Okamoto S; Sasanuma H; Nagasawa H; Takeda S; Masunaga SI; Tano K Chem Res Toxicol; 2017 Feb; 30(2):699-704. PubMed ID: 27943678 [TBL] [Abstract][Full Text] [Related]
14. Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes. Evans JW; Yudoh K; Delahoussaye YM; Brown JM Cancer Res; 1998 May; 58(10):2098-101. PubMed ID: 9605751 [TBL] [Abstract][Full Text] [Related]
15. Non-nuclear localized human NOSII enhances the bioactivation and toxicity of tirapazamine (SR4233) in vitro. Chinje EC; Cowen RL; Feng J; Sharma SP; Wind NS; Harris AL; Stratford IJ Mol Pharmacol; 2003 Jun; 63(6):1248-55. PubMed ID: 12761334 [TBL] [Abstract][Full Text] [Related]
16. The anticancer drug tirapazamine has antimicrobial activity against Escherichia coli, Staphylococcus aureus and Clostridium difficile. Shah Z; Mahbuba R; Turcotte B FEMS Microbiol Lett; 2013 Oct; 347(1):61-9. PubMed ID: 23888874 [TBL] [Abstract][Full Text] [Related]
17. Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. Shen X; Laber CH; Sarkar U; Galazzi F; Johnson KM; Mahieu NG; Hillebrand R; Fuchs-Knotts T; Barnes CL; Baker GA; Gates KS J Org Chem; 2018 Mar; 83(6):3126-3131. PubMed ID: 29461834 [TBL] [Abstract][Full Text] [Related]
18. Reduction of 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, WIN 59075, SR 4233) to a DNA-damaging species: a direct role for NADPH:cytochrome P450 oxidoreductase. Fitzsimmons SA; Lewis AD; Riley RJ; Workman P Carcinogenesis; 1994 Aug; 15(8):1503-10. PubMed ID: 8055626 [TBL] [Abstract][Full Text] [Related]
19. Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting. Delahoussaye YM; Hay MP; Pruijn FB; Denny WA; Brown JM Biochem Pharmacol; 2003 Jun; 65(11):1807-15. PubMed ID: 12781332 [TBL] [Abstract][Full Text] [Related]
20. Photochemical and photobiological studies of tirapazamine (SR 4233) and related quinoxaline 1,4-Di-N-oxide analogues. Inbaraj JJ; Motten AG; Chignell CF Chem Res Toxicol; 2003 Feb; 16(2):164-70. PubMed ID: 12588187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]