BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37048126)

  • 21. PLASTICITY OF OXYLIPIN METABOLISM AMONG CLONES OF THE MARINE DIATOM SKELETONEMA MARINOI (BACILLARIOPHYCEAE)(1).
    Gerecht A; Romano G; Ianora A; d'Ippolito G; Cutignano A; Fontana A
    J Phycol; 2011 Oct; 47(5):1050-6. PubMed ID: 27020186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of fucoxanthin alone and in combination with D-glucosamine hydrochloride on carrageenan/kaolin-induced experimental arthritis in rats.
    Gong D; Chu W; Jiang L; Geng C; Li J; Ishikawa N; Kajima K; Zhong L
    Phytother Res; 2014 Jul; 28(7):1054-63. PubMed ID: 24338843
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of irradiance on the C allocation in the coastal marine diatom Skeletonema marinoi Sarno and Zingone.
    Norici A; Bazzoni AM; Pugnetti A; Raven JA; Giordano M
    Plant Cell Environ; 2011 Oct; 34(10):1666-77. PubMed ID: 21707652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potent carotenoid astaxanthin expands the anti-cancer activity of cisplatin in human prostate cancer cells.
    Erzurumlu Y; Catakli D; Dogan HK
    J Nat Med; 2023 Jun; 77(3):572-583. PubMed ID: 37130999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fucoxanthin, a natural carotenoid, induces G1 arrest and GADD45 gene expression in human cancer cells.
    Yoshiko S; Hoyoku N
    In Vivo; 2007; 21(2):305-9. PubMed ID: 17436581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga
    Guo B; Oliviero T; Fogliano V; Ma Y; Chen F; Capuano E
    J Agric Food Chem; 2020 Feb; 68(7):1844-1850. PubMed ID: 31081326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Microbiological, Toxicological, and Biochemical Study of the Effects of Fucoxanthin, a Marine Carotenoid, on
    Šudomová M; Shariati MA; Echeverría J; Berindan-Neagoe I; Nabavi SM; Hassan STS
    Mar Drugs; 2019 Nov; 17(11):. PubMed ID: 31739453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum.
    Kim SM; Jung YJ; Kwon ON; Cha KH; Um BH; Chung D; Pan CH
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1843-55. PubMed ID: 22371063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin.
    Marella TK; Tiwari A
    Bioresour Technol; 2020 Jul; 307():123245. PubMed ID: 32234591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum.
    Hao TB; Lu Y; Zhang ZH; Liu SF; Wang X; Yang WD; Balamurugan S; Li HY
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8783-8793. PubMed ID: 34741642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats.
    Matsumoto M; Hosokawa M; Matsukawa N; Hagio M; Shinoki A; Nishimukai M; Miyashita K; Yajima T; Hara H
    Eur J Nutr; 2010 Jun; 49(4):243-9. PubMed ID: 19888619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Different Nitrogen Concentrations on Co-Production of Fucoxanthin and Fatty Acids in
    Rui X; Amenorfenyo DK; Peng K; Li H; Wang L; Huang X; Li C; Li F
    Mar Drugs; 2023 Feb; 21(2):. PubMed ID: 36827147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro.
    Lin J; Huang L; Yu J; Xiang S; Wang J; Zhang J; Yan X; Cui W; He S; Wang Q
    Mar Drugs; 2016 Mar; 14(4):. PubMed ID: 27023569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel strategy for isolation and purification of fucoxanthinol and fucoxanthin from the diatom Nitzschia laevis.
    Sun P; Wong CC; Li Y; He Y; Mao X; Wu T; Ren Y; Chen F
    Food Chem; 2019 Mar; 277():566-572. PubMed ID: 30502186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carotenoid biosynthesis in diatoms.
    Bertrand M
    Photosynth Res; 2010 Nov; 106(1-2):89-102. PubMed ID: 20734232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opportunities for the marine carotenoid value chain from the perspective of fucoxanthin degradation.
    Yusof Z; Khong NMH; Choo WS; Foo SC
    Food Chem; 2022 Jul; 383():132394. PubMed ID: 35183961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marine carotenoids and cardiovascular risk markers.
    Riccioni G; D'Orazio N; Franceschelli S; Speranza L
    Mar Drugs; 2011; 9(7):1166-1175. PubMed ID: 21822408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum.
    Gilbert-López B; Barranco A; Herrero M; Cifuentes A; Ibáñez E
    Food Res Int; 2017 Sep; 99(Pt 3):1056-1065. PubMed ID: 28865617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: Acute and sub-acute toxicity evaluation in rodent model.
    Ravi H; Arunkumar R; Baskaran V
    J Biomater Appl; 2015 Oct; 30(4):420-34. PubMed ID: 26084499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.