BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 37048129)

  • 1. Cracking the Code of Neuronal Cell Fate.
    Morello G; La Cognata V; Guarnaccia M; D'Agata V; Cavallaro S
    Cells; 2023 Mar; 12(7):. PubMed ID: 37048129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Profiles of Cell Fate Transitions Reveal Early Drivers of Neuronal Apoptosis and Survival.
    Morello G; Villari A; Spampinato AG; La Cognata V; Guarnaccia M; Gentile G; Ciotti MT; Calissano P; D'Agata V; Severini C; Cavallaro S
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cracking the code of neuronal apoptosis and survival.
    Cavallaro S
    Cell Death Dis; 2015 Nov; 6(11):e1963. PubMed ID: 26539910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional landscapes at the intersection of neuronal apoptosis and substance P-induced survival: exploring pathways and drug targets.
    Paparone S; Severini C; Ciotti MT; D'Agata V; Calissano P; Cavallaro S
    Cell Death Discov; 2016; 2():16050. PubMed ID: 27551538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug target identification at the crossroad of neuronal apoptosis and survival.
    Maino B; Paparone S; Severini C; Ciotti MT; D'agata V; Calissano P; Cavallaro S
    Expert Opin Drug Discov; 2017 Mar; 12(3):249-259. PubMed ID: 28067072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis.
    Martin LJ; Al-Abdulla NA; Brambrink AM; Kirsch JR; Sieber FE; Portera-Cailliau C
    Brain Res Bull; 1998 Jul; 46(4):281-309. PubMed ID: 9671259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAPKs as mediators of cell fate determination: an approach to neurodegenerative diseases.
    Miloso M; Scuteri A; Foudah D; Tredici G
    Curr Med Chem; 2008; 15(6):538-48. PubMed ID: 18336268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death.
    Akhter R; Sanphui P; Das H; Saha P; Biswas SC
    J Neurochem; 2015 Sep; 134(6):1091-103. PubMed ID: 25891762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Cell Fate Reprogramming and Protein Engineering to Study Transcription Factor Functions.
    Adrian-Segarra JM; Weigel B; Mall M
    Methods Mol Biol; 2021; 2352():227-236. PubMed ID: 34324190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Jun transcription factor expression and phosphorylation in neuronal differentiation, neuronal cell death, and plastic adaptations in vivo.
    Schlingensiepen KH; Wollnik F; Kunst M; Schlingensiepen R; Herdegen T; Brysch W
    Cell Mol Neurobiol; 1994 Oct; 14(5):487-505. PubMed ID: 7621509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of transcriptional changes underlying neuronal apoptosis.
    Cavallaro S
    Methods Mol Biol; 2015; 1254():141-51. PubMed ID: 25431063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. c-Jun and the transcriptional control of neuronal apoptosis.
    Ham J; Eilers A; Whitfield J; Neame SJ; Shah B
    Biochem Pharmacol; 2000 Oct; 60(8):1015-21. PubMed ID: 11007936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems biology of apoptosis and survival: implications for drug development.
    Pezzino S; Paratore S; Cavallaro S
    Curr Pharm Des; 2011; 17(3):190-203. PubMed ID: 21348833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mamo decodes hierarchical temporal gradients into terminal neuronal fate.
    Liu LY; Long X; Yang CP; Miyares RL; Sugino K; Singer RH; Lee T
    Elife; 2019 Sep; 8():. PubMed ID: 31545163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cracking the transcriptional code for cell specification in the neural tube.
    Marquardt T; Pfaff SL
    Cell; 2001 Sep; 106(6):651-4. PubMed ID: 11572771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large differences in global transcriptional regulatory programs of normal and tumor colon cells.
    Cordero D; Solé X; Crous-Bou M; Sanz-Pamplona R; Paré-Brunet L; Guinó E; Olivares D; Berenguer A; Santos C; Salazar R; Biondo S; Moreno V
    BMC Cancer; 2014 Sep; 14():708. PubMed ID: 25253512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous recovery after brain damage: molecular mechanisms that balance neuronal life/death fate.
    Tovar-y-Romo LB; Penagos-Puig A; Ramírez-Jarquín JO
    J Neurochem; 2016 Jan; 136(1):13-27. PubMed ID: 26376102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Bid to prevent programmed cell death in neurons.
    Culmsee C; Plesnila N
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1334-40. PubMed ID: 17073814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.