These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37048239)

  • 1. The Mechanism Underlying the Amylose-Zein Complexation Process and the Stability of the Molecular Conformation of Amylose-Zein Complexes in Water Based on Molecular Dynamics Simulation.
    Wang C; Ji N; Dai L; Qin Y; Shi R; Xiong L; Sun Q
    Foods; 2023 Mar; 12(7):. PubMed ID: 37048239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical stability study of protein-benzoic acid complexes using molecular dynamics simulations.
    Arooj M; Shehadi I; Nassab CN; Mohamed AA
    Amino Acids; 2020 Sep; 52(9):1353-1362. PubMed ID: 33006112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of V
    Wang YS; Liu WH; Zhang X; Chen HH
    Int J Biol Macromol; 2020 Jul; 154():456-465. PubMed ID: 32194105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation.
    Zhi-Guang C; Hong-Hui Z; Keipper W; Hua-Yin P; Qi Y; Chen-Lu F; Guo-Wei S; Jun-Rong H
    Food Chem; 2020 Oct; 327():127047. PubMed ID: 32454269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexation Mechanisms of Aqueous Amylose: Molecular Dynamics Study Using 3-Pentadecylphenol.
    Skrdla PJ; Coscia BJ; Gavartin J; Browning A; Shelley J; Sanders JM
    Mol Pharm; 2024 Jul; 21(7):3540-3552. PubMed ID: 38900044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of HHP (high hydrostatic pressure) on the interchain interaction and the conformation of amylopectin and double-amylose molecules.
    Zhi-Guang C; Jun-Rong H; Hua-Yin P; Qi Y; Chen-Lu F
    Int J Biol Macromol; 2020 Jul; 155():91-102. PubMed ID: 32224170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Characterization of a Novel Core-Shell Nano Delivery System Based on Zein and Carboxymethylated Short-Chain Amylose for Encapsulation of Curcumin.
    Lin Z; Zhan L; Qin K; Li Y; Qin Y; Yang L; Sun Q; Ji N; Xie F
    Foods; 2024 Jun; 13(12):. PubMed ID: 38928779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose.
    Amoako DB; Awika JM
    Food Chem; 2019 Jul; 285():326-333. PubMed ID: 30797353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery.
    Bisharat L; Barker SA; Narbad A; Craig DQM
    Int J Pharm; 2019 Feb; 556():311-319. PubMed ID: 30557678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation.
    Cheng L; Zhu X; Hamaker BR; Zhang H; Campanella OH
    Carbohydr Polym; 2019 Jul; 216():157-166. PubMed ID: 31047052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complexation of 26-Mer Amylose with Egg Yolk Lipids with Different Numbers of Tails Using a Molecular Dynamics Simulation.
    Sang S; Xu X; Zhu X; Narsimhan G
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of starch properties and zein content of commercial maize hybrids on kinetics of starch digestibility in an in vitro poultry model.
    Kljak K; Duvnjak M; Grbeša D
    J Sci Food Agric; 2019 Nov; 99(14):6372-6379. PubMed ID: 31278750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different kinds of fatty acids on the behavior, structure and digestibility of high amylose maize starch-fatty acid complexes.
    Sun S; Hua S; Hong Y; Gu Z; Cheng L; Ban X; Li Z; Li C; Zhou J
    J Sci Food Agric; 2022 Oct; 102(13):5837-5848. PubMed ID: 35426124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Natural Food-Grade Core-Shell Starch/Zein Microparticles by Antisolvent Exchange and Transglutaminase Crosslinking for Reduced Digestion of Starch.
    Wang C; Qin K; Sun Q; Qiao X
    Front Nutr; 2022; 9():879757. PubMed ID: 35495914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexation between High-Amylose Starch and Binary Aroma Compounds of Decanal and Thymol: Cooperativity or Competition?
    Gao Q; Bie P; Tong X; Zhang B; Fu X; Huang Q
    J Agric Food Chem; 2021 Oct; 69(39):11665-11675. PubMed ID: 34469152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-digestibility relationship of starch inclusion complex with salicylic acid.
    Guo J; Shi L; Kong L
    Carbohydr Polym; 2023 Jan; 299():120147. PubMed ID: 36876776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment.
    Li N; Yu JJ; Jin N; Chen Y; Li SH; Chen Y
    J Food Sci; 2020 Aug; 85(8):2452-2460. PubMed ID: 32691480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Carbohydr Polym; 2015 May; 122():197-201. PubMed ID: 25817659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the multi-scale structure and physicochemical properties of millet starch with varied amylose content.
    Shi P; Zhao Y; Qin F; Liu K; Wang H
    Food Chem; 2023 Jun; 410():135422. PubMed ID: 36623455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.