These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37048367)

  • 1. Comparing the Volatile and Soluble Profiles of Fermented and Integrated Chinese Bayberry Wine with HS-SPME GC-MS and UHPLC Q-TOF.
    Miao Y; Hu G; Sun X; Li Y; Huang H; Fu Y
    Foods; 2023 Apr; 12(7):. PubMed ID: 37048367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bayberry fermented wine aroma from different cultivars by GC-MS combined with electronic nose analysis.
    Cao Y; Wu Z; Weng P
    Food Sci Nutr; 2020 Feb; 8(2):830-840. PubMed ID: 32148792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory evaluation, physicochemical properties and aroma-active profiles in a diverse collection of Chinese bayberry (Myrica rubra) cultivars.
    Cheng H; Chen J; Chen S; Xia Q; Liu D; Ye X
    Food Chem; 2016 Dec; 212():374-85. PubMed ID: 27374545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring jujube wine flavor and fermentation mechanisms by HS-SPME-GC-MS and UHPLC-MS metabolomics.
    Zhao X; Wang Z; Tang F; Cai W; Peng B; Shan C
    Food Chem X; 2024 Mar; 21():101115. PubMed ID: 38292672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of key odorants and anthocyanin compounds of cv. Okuzgozu (Vitis vinifera L.) red wines with a free run and pressed pomace using GC-MS-Olfactometry and LC-MS-MS.
    Tetik MA; Sevindik O; Kelebek H; Selli S
    J Mass Spectrom; 2018 May; 53(5):444-454. PubMed ID: 29469168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC-MS) and olfactometry (GC-O).
    Kang W; Li Y; Xu Y; Jiang W; Tao Y
    J Food Sci; 2012 Oct; 77(10):C1030-5. PubMed ID: 23009608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient methodology for modeling to predict wine aroma expression based on quantitative data of volatile compounds: A case study of oak barrel-aged red wines.
    Ling M; Bai X; Cui D; Shi Y; Duan C; Lan Y
    Food Res Int; 2023 Feb; 164():112440. PubMed ID: 36738004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Aroma Profile of Sauce-Flavor Baijiu by GC-IMS Combined with Multivariate Statistical Analysis.
    Cai W; Wang Y; Wang W; Shu N; Hou Q; Tang F; Shan C; Yang X; Guo Z
    J Anal Methods Chem; 2022; 2022():4614330. PubMed ID: 35392280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS.
    Chen Y; Li P; Liao L; Qin Y; Jiang L; Liu Y
    Food Chem; 2021 Nov; 361():130055. PubMed ID: 34023693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Key Aroma Compounds of Shandong Matcha Using HS-SPME-GC/MS and SAFE-GC/MS.
    Luo Y; Zhang Y; Qu F; Wang P; Gao J; Zhang X; Hu J
    Foods; 2022 Sep; 11(19):. PubMed ID: 36230044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis.
    Cao W; Shu N; Wen J; Yang Y; Jin Y; Lu W
    Foods; 2022 Sep; 11(18):. PubMed ID: 36140895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS.
    Xiao Y; Huang Y; Chen Y; Xiao L; Zhang X; Yang C; Li Z; Zhu M; Liu Z; Wang Y
    Curr Res Food Sci; 2022; 5():1788-1807. PubMed ID: 36268133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Volatile Compounds, Microbial Succession, and Their Relation During Spontaneous Fermentation of Petit Manseng.
    Ma Y; Li T; Xu X; Ji Y; Jiang X; Shi X; Wang B
    Front Microbiol; 2021; 12():717387. PubMed ID: 34475866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME-GC-MS.
    Cai W; Tang F; Guo Z; Guo X; Zhang Q; Zhao X; Ning M; Shan C
    Food Chem; 2020 Nov; 330():127330. PubMed ID: 32569941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Flavor Analysis of Volatile Components During the Vase Period of Cut Lily (
    Wei L; Wei S; Hu D; Feng L; Liu Y; Liu H; Liao W
    Front Plant Sci; 2022; 13():822956. PubMed ID: 35783924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages.
    Rodrigues F; Caldeira M; Câmara JS
    Anal Chim Acta; 2008 Feb; 609(1):82-104. PubMed ID: 18243877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of odor-active volatile compounds of jambolan [
    Pino JA; Espinosa S; Duarte C
    J Food Sci Technol; 2022 Apr; 59(4):1529-1537. PubMed ID: 35250076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile flavor compounds, total polyphenolic contents and antioxidant activities of a China gingko wine.
    Wang X; Xie K; Zhuang H; Ye R; Fang Z; Feng T
    Food Chem; 2015 Sep; 182():41-6. PubMed ID: 25842306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Pepper (
    Niu W; Tian H; Zhan P
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.
    Kang BS; Lee JE; Park HJ
    J Food Sci; 2014 Jun; 79(6):C1106-16. PubMed ID: 24888253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.