These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37048956)

  • 1. Towards an Optimized Artificial Neural Network for Predicting Flow Stress of In718 Alloys at High Temperatures.
    Zhang C; Shi Q; Wang Y; Qiao J; Tang T; Zhou J; Liang W; Chen G
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Establishment of artificial neural network model for predicting lymph node metastasis in patients with stage Ⅱ-Ⅲ gastric cancer].
    Xue Z; Lu J; Lin J; Huang CM; Li P; Xie JW; Wang JB; Lin JX; Chen QY; Zheng CH
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Apr; 25(4):327-335. PubMed ID: 35461201
    [No Abstract]   [Full Text] [Related]  

  • 3. Prediction of Flow Stress of Annealed 7075 Al Alloy in Hot Deformation Using Strain-Compensated Arrhenius and Neural Network Models.
    Yang H; Bu H; Li M; Lu X
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neural Networks for Predicting Plastic Anisotropy of Sheet Metals Based on Indentation Test.
    Xia J; Won C; Kim H; Lee W; Yoon J
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of genetic algorithms for neural networks to predict community-acquired pneumonia.
    Heckerling PS; Gerber BS; Tape TG; Wigton RS
    Artif Intell Med; 2004 Jan; 30(1):71-84. PubMed ID: 14684266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.
    Shakiba M; Parson N; Chen XG
    Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Feed-Forward Backpropagation Artificial Neural Networks for Strain-Rate-Sensitive Mechanical Modeling.
    Tuninetti V; Forcael D; Valenzuela M; Martínez A; Ávila A; Medina C; Pincheira G; Salas A; Oñate A; Duchêne L
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Behavior of AA5005 Alloy at High Temperature and Low Strain Rate Based on Arrhenius-Type Equation and Back Propagation Artificial Neural Network (BP-ANN) Model.
    Li S; Chen W; Bhandari KS; Jung DW; Chen X
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Logistic Regression Model and Artificial Neural Networks in Predicting of Student's Academic Failure.
    Teshnizi SH; Ayatollahi SM
    Acta Inform Med; 2015 Oct; 23(5):296-300. PubMed ID: 26635438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved ANN-Based Approach Using Relative Impact for the Prediction of Thermal Coal Elemental Composition Using Proximate Analysis.
    Jo J; Lee DG; Kim J; Lee BH; Jeon CH
    ACS Omega; 2022 Aug; 7(34):29734-29746. PubMed ID: 36061718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A well-trained artificial neural network for predicting the rheological behavior of MWCNT-Al
    Esfe MH; Eftekhari SA; Hekmatifar M; Toghraie D
    Sci Rep; 2021 Aug; 11(1):17696. PubMed ID: 34465796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review.
    Xu A; Chang H; Xu Y; Li R; Li X; Zhao Y
    Waste Manag; 2021 Apr; 124():385-402. PubMed ID: 33662770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Artificial Neural Network-Based Models to Investigate Deformation Behavior of AZ31B Magnesium Alloy at Warm Tensile Deformation.
    Murugesan M; Yu JH; Chung W; Lee CW
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of artificial neural network for natural ventilation schemes to control operable windows.
    Srisamranrungruang T; Hiyama K
    Heliyon; 2022 Nov; 8(11):e11817. PubMed ID: 36439739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive study on applications of artificial neural network in food process modeling.
    Bhagya Raj GVS; Dash KK
    Crit Rev Food Sci Nutr; 2022; 62(10):2756-2783. PubMed ID: 33327740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on improved Arrhenius-type and artificial neural network models to predict high-temperature flow behaviors in 20MnNiMo alloy.
    Quan GZ; Yu CT; Liu YY; Xia YF
    ScientificWorldJournal; 2014; 2014():108492. PubMed ID: 24688358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.