These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37049003)

  • 1. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in direct seawater splitting for producing hydrogen.
    Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P
    Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater.
    Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T
    Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in hydrogen production from electrocatalytic seawater splitting.
    Wang C; Shang H; Jin L; Xu H; Du Y
    Nanoscale; 2021 May; 13(17):7897-7912. PubMed ID: 33881101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production.
    Cui C; Zhang H; Wang D; Song J; Yang Y
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis.
    Xu W; Wang Z; Liu P; Tang X; Zhang S; Chen H; Yang Q; Chen X; Tian Z; Dai S; Chen L; Lu Z
    Adv Mater; 2024 Jan; 36(2):e2306062. PubMed ID: 37907201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Corrosion Resistance of NiFe-Layered Double Hydroxide Catalyst for Stable Seawater Electrolysis Promoted by Phosphate Intercalation.
    Zhang B; Liu S; Zhang S; Cao Y; Wang H; Han C; Sun J
    Small; 2022 Nov; 18(45):e2203852. PubMed ID: 36192167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal nitrides for seawater electrolysis.
    Hu H; Wang X; Attfield JP; Yang M
    Chem Soc Rev; 2024 Jan; 53(1):163-203. PubMed ID: 38019124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A membrane-based seawater electrolyser for hydrogen generation.
    Xie H; Zhao Z; Liu T; Wu Y; Lan C; Jiang W; Zhu L; Wang Y; Yang D; Shao Z
    Nature; 2022 Dec; 612(7941):673-678. PubMed ID: 36450987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging materials and technologies for electrocatalytic seawater splitting.
    Jin H; Xu J; Liu H; Shen H; Yu H; Jaroniec M; Zheng Y; Qiao SZ
    Sci Adv; 2023 Oct; 9(42):eadi7755. PubMed ID: 37851797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen.
    Zhang S; Xu W; Chen H; Yang Q; Liu H; Bao S; Tian Z; Slavcheva E; Lu Z
    Adv Mater; 2024 Sep; 36(37):e2311322. PubMed ID: 38299450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels.
    Kuang Y; Kenney MJ; Meng Y; Hung WH; Liu Y; Huang JE; Prasanna R; Li P; Li Y; Wang L; Lin MC; McGehee MD; Sun X; Dai H
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6624-6629. PubMed ID: 30886092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives.
    Chen L; Yu C; Dong J; Han Y; Huang H; Li W; Zhang Y; Tan X; Qiu J
    Chem Soc Rev; 2024 Jul; 53(14):7455-7488. PubMed ID: 38855878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production.
    Li P; Wang S; Samo IA; Zhang X; Wang Z; Wang C; Li Y; Du Y; Zhong Y; Cheng C; Xu W; Liu X; Kuang Y; Lu Z; Sun X
    Research (Wash D C); 2020; 2020():2872141. PubMed ID: 33043295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.
    Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH.
    Chen H; Liu P; Li W; Xu W; Wen Y; Zhang S; Yi L; Dai Y; Chen X; Dai S; Tian Z; Chen L; Lu Z
    Adv Mater; 2024 Nov; 36(45):e2411302. PubMed ID: 39291899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Hydrazine Oxidation with Seawater Electrolysis for Energy-Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts.
    Xin Y; Shen K; Guo T; Chen L; Li Y
    Small; 2023 May; 19(21):e2300019. PubMed ID: 36840653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production.
    Wang J; Li Y; Xu T; Zheng J; Xiao K; Sun B; Ge M; Yuan X; Zhou C; Cai Z
    Inorg Chem; 2024 Apr; 63(13):5773-5778. PubMed ID: 38498977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.