These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37049190)

  • 21. Effect of pH regulation by sulfate-reducing bacteria on corrosion behaviour of duplex stainless steel 2205 in acidic artificial seawater.
    Tran TTT; Kannoorpatti K; Padovan A; Thennadil S
    R Soc Open Sci; 2021 Jan; 8(1):200639. PubMed ID: 33614061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO
    Eduok U; Ohaeri E; Szpunar J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110095. PubMed ID: 31546354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Alternating Current and Sulfate-Reducing Bacteria on Corrosion of X80 Pipeline Steel in Soil-Extract Solution.
    Qing Y; Bai Y; Xu J; Wu T; Yan M; Sun C
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO
    Liu H; Meng G; Li W; Gu T; Liu H
    Front Microbiol; 2019; 10():1298. PubMed ID: 31244809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corrosion Behavior on 20# Pipeline Steel by Sulfate-Reducing Bacteria in Simulated NaCl Alkali/Surfactant/Polymer Produced Solution.
    Zhang L; Yu X; Sun H; Ge Y; Wang C; Li L; Kang J; Qian H; Gao Q
    ACS Omega; 2023 Apr; 8(15):13955-13966. PubMed ID: 37091408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrosion behavior of predominant Halodesulfovibrio in a marine SRB consortium and its mitigation using ZnO nanoparticles.
    Jafari M; Moghimi H; Tirandaz H; Ebrahim-Habibi MB
    Sci Rep; 2024 Aug; 14(1):19545. PubMed ID: 39174663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corrosion behavior and interaction of mixed bacteria on carbon steel in reclaimed water.
    Chu Y; Xu P; Ou Y; Bai P; Wei Z
    Sci Total Environ; 2020 May; 718():136679. PubMed ID: 32092508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Pseudomonas sp. on simulated tidal corrosion of X80 pipeline steel.
    Zhou X; Su H; Wang Q; Zhong Z; Li Z; Wu T
    Bioelectrochemistry; 2023 Apr; 150():108359. PubMed ID: 36577201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of sulphate-reducing bacteria on the performance of engineering materials.
    Javaherdashti R
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin.
    Wang D; Kijkla P; Mohamed ME; Saleh MA; Kumseranee S; Punpruk S; Gu T
    Bioelectrochemistry; 2021 Dec; 142():107920. PubMed ID: 34388603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer.
    Anguita J; Pizarro G; Vargas IT
    Bioelectrochemistry; 2022 Jun; 145():108058. PubMed ID: 35074731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid.
    Kalajahi ST; Rasekh B; Yazdian F; Neshati J; Taghavi L
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40537-40551. PubMed ID: 32666463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of organic acid metabolites in geo-energy pipeline corrosion in a sulfate reducing bacteria environment.
    Madirisha M; Hack R; van der Meer F
    Heliyon; 2022 May; 8(5):e09420. PubMed ID: 35647338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor.
    Parthipan P; Cheng L; Dhandapani P; Rajasekar A
    Sci Total Environ; 2023 Jan; 856(Pt 2):159203. PubMed ID: 36202367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil.
    Liu B; Li Z; Yang X; Du C; Li X
    Bioelectrochemistry; 2020 Oct; 135():107551. PubMed ID: 32470907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of
    Tang J; Guo R; Zhang X; Zhao X
    Heliyon; 2022 Dec; 8(12):e12588. PubMed ID: 36643323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface roughness influence on extracellular electron microbiologically influenced corrosion of C1018 carbon steel by Desulfovibrio ferrophilus IS5 biofilm.
    Khan A; Xu L; Kijkla P; Kumseranee S; Punpruk S; Gu T
    Bioelectrochemistry; 2024 Oct; 159():108731. PubMed ID: 38759479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study.
    Kalajahi ST; Mofradnia SR; Yazdian F; Rasekh B; Neshati J; Taghavi L; Pourmadadi M; Haghirosadat BF
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):49884-49897. PubMed ID: 35220537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm.
    Alrammah F; Xu L; Patel N; Kontis N; Rosado A; Gu T
    Sci Total Environ; 2024 May; 925():171763. PubMed ID: 38494030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.