These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 37049205)
1. Effect of Process Parameters on the Microstructure and Properties of Cu-Cr-Nb-Ti Alloy Manufactured by Selective Laser Melting. Li J; Liu Z; Zhou H; Ye S; Zhang Y; Liu T; Jiang D; Chen L; Zhou R Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049205 [TBL] [Abstract][Full Text] [Related]
2. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting. Zhao D; Han C; Li J; Liu J; Wei Q Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110784. PubMed ID: 32279779 [TBL] [Abstract][Full Text] [Related]
3. Mechanical Properties of High-Strength Cu-Cr-Zr Alloy Fabricated by Selective Laser Melting. Sun F; Liu P; Chen X; Zhou H; Guan P; Zhu B Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171810 [TBL] [Abstract][Full Text] [Related]
4. Oriented face-centered cubic to hexagonal close-packed martensitic transition, grain morphology, and mechanical properties of Co-Cr alloy fabricated by selective laser melting. Yan X; Jiang R; Li W; Lin H J Prosthet Dent; 2022 Feb; 127(2):282-287. PubMed ID: 33279164 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. Zhou Y; Li N; Yan J; Zeng Q J Prosthet Dent; 2018 Oct; 120(4):617-623. PubMed ID: 29627206 [TBL] [Abstract][Full Text] [Related]
6. Analysis of microstructure and fatigue of cast versus selective laser-melted dental Co-Cr alloy. Wu M; Dong X; Qu Y; Yan J; Li N J Prosthet Dent; 2022 Aug; 128(2):218.e1-218.e7. PubMed ID: 35786348 [TBL] [Abstract][Full Text] [Related]
7. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting. Ko KH; Kang HG; Huh YH; Park CJ; Cho LR J Mech Behav Biomed Mater; 2022 Feb; 126():105051. PubMed ID: 34959095 [TBL] [Abstract][Full Text] [Related]
8. Mechanical properties and microstructures of cast Ti-Cu alloys. Kikuchi M; Takada Y; Kiyosue S; Yoda M; Woldu M; Cai Z; Okuno O; Okabe T Dent Mater; 2003 May; 19(3):174-81. PubMed ID: 12628428 [TBL] [Abstract][Full Text] [Related]
10. Microstructure, Mechanical Properties, and Corrosion Resistance of Ag-Cu Alloys with La Zhao X; Zheng H; Ma X; Sheng Y; Zeng D; Yuan J Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138810 [TBL] [Abstract][Full Text] [Related]
11. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting. Deng J; Chen C; Zhang W; Li Y; Li R; Zhou K Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027909 [TBL] [Abstract][Full Text] [Related]
12. Relationship between Microstructure and Properties of Cu-Cr-Ag Alloy. Liang D; Mi X; Peng L; Xie H; Huang G; Yang Z Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32041129 [TBL] [Abstract][Full Text] [Related]
13. Microstructure, mechanical properties, and retentive forces of cobalt-chromium removable partial denture frameworks fabricated by selective laser melting followed by heat treatment. Lee WF; Wang JC; Hsu CY; Peng PW J Prosthet Dent; 2022 Jan; 127(1):115-121. PubMed ID: 33234303 [TBL] [Abstract][Full Text] [Related]
14. Influence Mechanism of Ageing Parameters of Cu-Cr-Zr Alloy on Its Structure and Properties. Ma Y; Chen H; Li H; Dang S Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363199 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. Wu L; Zhu H; Gai X; Wang Y J Prosthet Dent; 2014 Jan; 111(1):51-5. PubMed ID: 24161258 [TBL] [Abstract][Full Text] [Related]
16. A Comparison of the Microstructure, Mechanical Properties, and Corrosion Resistance of the K213 Superalloy after Conventional Casting and Selective Laser Melting. Wang J; Wang Z; Sui Q; Xu S; Yuan Q; Zhang D; Liu J Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36836961 [TBL] [Abstract][Full Text] [Related]
17. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Fischer M; Joguet D; Robin G; Peltier L; Laheurte P Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492 [TBL] [Abstract][Full Text] [Related]
18. Processing Technologies and Properties of Cu-10Sn Formed by Selective Laser Melting Combined with Heat Treatment. Wang H; Guo L; Nie Z; Lyu Q; Zhang Q 3D Print Addit Manuf; 2021 Feb; 8(1):13-22. PubMed ID: 36655180 [TBL] [Abstract][Full Text] [Related]
19. Construction of Ti-Nb-Ti Sato K; Takahashi M; Takada Y Dent Mater J; 2020 Jun; 39(3):422-428. PubMed ID: 31969544 [TBL] [Abstract][Full Text] [Related]
20. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Lu Y; Ren L; Xu X; Yang Y; Wu S; Luo J; Yang M; Liu L; Zhuang D; Yang K; Lin J J Mech Behav Biomed Mater; 2018 May; 81():130-141. PubMed ID: 29510340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]