These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37049274)

  • 1. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Narrow-Bandpass One-Step Leapfrog Hybrid Implicit-Explicit Algorithm with Convolutional Boundary Condition for Its Applications in Sensors.
    Wang Y; Xie Y; Jiang H; Wu P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient HIE-FDTD method for designing a dual-band anisotropic terahertz absorption structure.
    Zhou Y; Li H; Li L; Cai Y; Zeyde K; Han X
    Opt Express; 2021 Jun; 29(12):18611-18623. PubMed ID: 34154114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosswell electromagnetic modeling from impulsive source: Optimization strategy for dispersion suppression in convolutional perfectly matched layer.
    Fang S; Pan H; Du T; Konaté AA; Deng C; Qin Z; Guo B; Peng L; Ma H; Li G; Zhou F
    Sci Rep; 2016 Sep; 6():32613. PubMed ID: 27585538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate analysis of planar optical waveguide devices using higher-order FDTD scheme.
    Kong F; Li K; Liu X
    Opt Express; 2006 Nov; 14(24):11796-803. PubMed ID: 19529602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition.
    Sun W; Fu Q; Chen Z
    Appl Opt; 1999 May; 38(15):3141-51. PubMed ID: 18319902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the symplectic finite-difference time-domain method to light scattering by small particles.
    Zhai PW; Kattawar GW; Yang P; Li C
    Appl Opt; 2005 Mar; 44(9):1650-6. PubMed ID: 15813268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence.
    Belkhir A; Arar O; Benabbes SS; Lamrous O; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046705. PubMed ID: 20481858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxiliary differential equation (ADE) method based complying-divergence implicit FDTD method for simulating the general dispersive anisotropic material.
    Xie G; Hou G; Feng N; Song K; Fang M; Li Y; Wu X; Huang Z
    Opt Express; 2023 May; 31(11):18468-18486. PubMed ID: 37381557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations.
    Laakso I; Ilvonen S; Uusitupa T
    Phys Med Biol; 2007 Dec; 52(23):7183-92. PubMed ID: 18030001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
    Kong SC; Simpson JJ; Backman V
    IEEE Microw Wirel Compon Lett; 2008 Jan; 18(1):4-6. PubMed ID: 19844602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary optical transmission through periodic Drude-like graphene sheets using FDTD algorithms and its unconditionally stable approximate Crank-Nicolson implementation.
    Wu S; Sun Y; Chi M; Chen X
    Sci Rep; 2020 Oct; 10(1):17462. PubMed ID: 33060774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators.
    Mirzaei-Ghormish S; Shahabadi M; Smalley DE
    Opt Express; 2022 Sep; 30(20):36332-36342. PubMed ID: 36258563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical near-field analysis of spherical metals: Application of the FDTD method combined with the ADE method.
    Yamaguchi T; Hinata T
    Opt Express; 2007 Sep; 15(18):11481-91. PubMed ID: 19547505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.