BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37049305)

  • 1. Thermal and Radiation Stability in Nanocrystalline Cu.
    Thomas M; Salvador H; Clark T; Lang E; Hattar K; Mathaudhu S
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Irradiation induced grain boundary flow--a new creep mechanism at the nanoscale.
    Ashkenazy Y; Averback RS
    Nano Lett; 2012 Aug; 12(8):4084-9. PubMed ID: 22775230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance.
    Du C; Jin S; Fang Y; Li J; Hu S; Yang T; Zhang Y; Huang J; Sha G; Wang Y; Shang Z; Zhang X; Sun B; Xin S; Shen T
    Nat Commun; 2018 Dec; 9(1):5389. PubMed ID: 30568181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper.
    Mohamed W; Miller B; Porter D; Murty K
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy.
    Zhang Y; Tunes MA; Crespillo ML; Zhang F; Boldman WL; Rack PD; Jiang L; Xu C; Greaves G; Donnelly SE; Wang L; Weber WJ
    Nanotechnology; 2019 Jul; 30(29):294004. PubMed ID: 30947152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation.
    El-Atwani O; Nathaniel JE; Leff AC; Hattar K; Taheri ML
    Sci Rep; 2017 May; 7(1):1836. PubMed ID: 28500318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers.
    Cunningham WS; Mascarenhas STJ; Riano JS; Wang W; Hwang S; Hattar K; Hodge AM; Trelewicz JR
    Adv Mater; 2022 Jul; 34(27):e2200354. PubMed ID: 35512110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties for irradiated face-centred cubic nanocrystalline metals.
    Xiao XZ; Song DK; Chu HJ; Xue JM; Duan HL
    Proc Math Phys Eng Sci; 2015 May; 471(2177):20140832. PubMed ID: 27547091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments.
    El Atwani O; Vo HT; Tunes MA; Lee C; Alvarado A; Krienke N; Poplawsky JD; Kohnert AA; Gigax J; Chen WY; Li M; Wang YQ; Wróbel JS; Nguyen-Manh D; Baldwin JKS; Tukac OU; Aydogan E; Fensin S; Martinez E
    Nat Commun; 2023 May; 14(1):2516. PubMed ID: 37130885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Evolution of Structural Defects under Irradiation in W by Molecular Dynamics Simulation.
    Zheng R; Xuan W; Xie J; Chen S; Yang L; Zhang L
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.
    El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP
    Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Softening due to Grain Boundary Cavity Formation and its Competition with Hardening in Helium Implanted Nanocrystalline Tungsten.
    Cunningham WS; Gentile JM; El-Atwani O; Taylor CN; Efe M; Maloy SA; Trelewicz JR
    Sci Rep; 2018 Feb; 8(1):2897. PubMed ID: 29440652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.