These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37049350)

  • 1. Recent Progress of 2D Layered Materials in Water-in-Salt/Deep Eutectic Solvent-Based Liquid Electrolytes for Supercapacitors.
    Melethil K; Kumar MS; Wu CM; Shen HH; Vedhanarayanan B; Lin TW
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Water-in-Salt" Electrolytes for Supercapacitors: A Review.
    Tian X; Zhu Q; Xu B
    ChemSusChem; 2021 Jun; 14(12):2501-2515. PubMed ID: 33830655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Formation of Solid Electrolyte Interphase and its Temperature Dependence in "Water-in-Salt" Supercapacitors.
    Quan T; Härk E; Xu Y; Ahmet I; Höhn C; Mei S; Lu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3979-3990. PubMed ID: 33427459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from -35 to +65 °C.
    Lu X; Jiménez-Riobóo RJ; Leech D; Gutiérrez MC; Ferrer ML; Del Monte F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29181-29193. PubMed ID: 32484323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives.
    Otgonbayar Z; Yang S; Kim IJ; Oh WC
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Preparation of Hydroxylated Boron Nitride Nanosheets for Solid-State Flexible Supercapacitors Using Deep Eutectic Solvent and Water Mixture as Electrolytes.
    Shan Q; Ding Q; Wang X; Wu W
    Langmuir; 2022 Jul; 38(26):8169-8178. PubMed ID: 35737723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of electrolyte materials and compositions for electrochemical supercapacitors.
    Zhong C; Deng Y; Hu W; Qiao J; Zhang L; Zhang J
    Chem Soc Rev; 2015 Nov; 44(21):7484-539. PubMed ID: 26050756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress of Electrode Architecture for MXene/MoS
    Kosnan MA; Azam MA; Safie NE; Munawar RF; Takasaki A
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Evolution in Activated-Carbon-Based Supercapacitors with Protic Deep Eutectic Solvent as Electrolyte.
    Phadke S; Amara S; Anouti M
    Chemphyschem; 2017 Sep; 18(17):2364-2373. PubMed ID: 28707746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors.
    Wang H; Deng Y; Qiu J; Wu J; Zhang K; Shao J; Yan L
    ChemSusChem; 2021 Jan; 14(2):632-641. PubMed ID: 33047843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Supercapacitors as the Next Generation Energy Storage Device: Emergence, Opportunity, and Challenges.
    Biswas S; Chowdhury A
    Chemphyschem; 2023 Feb; 24(3):e202200567. PubMed ID: 36215082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Development on Transition Metal Oxides-Based Core-Shell Structures for Boosted Energy Density Supercapacitors.
    Malavekar D; Pujari S; Jang S; Bachankar S; Kim JH
    Small; 2024 Aug; 20(31):e2312179. PubMed ID: 38593336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D-based electrode materials for supercapacitors - status, challenges, and prospects.
    Hegazy HH; Khan J; Shakeel N; Alabdullkarem EA; Saleem MI; Alrobei H; Yahia IS
    RSC Adv; 2024 Oct; 14(45):32958-32977. PubMed ID: 39429928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Silk Protein-Based Eutectogel as a Freeze-Resistant and Flexible Electrolyte for Zn-Ion Hybrid Supercapacitors.
    Li Z; Xu X; Jiang Z; Chen J; Tu J; Wang X; Gu C
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44821-44831. PubMed ID: 36125802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Few-layered Ti
    Gong S; Zhao F; Zhang Y; Xu H; Li M; Qi J; Wang H; Wang Z; Hu Y; Fan X; Peng W; Li C; Liu J
    J Colloid Interface Sci; 2023 Feb; 632(Pt A):216-222. PubMed ID: 36413946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Studies on the Quantum Capacitance of Two-Dimensional Electrode Materials for Supercapacitors.
    Lin J; Yuan Y; Wang M; Yang X; Yang G
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.