These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37049373)

  • 1. Non-Noble FeCrO
    Du M; Guo L; Ren H; Tao X; Li Y; Nan B; Si R; Chen C; Li L
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO
    Gu Y; Xu D; Huang Y; Long Z; Chen G
    Dalton Trans; 2021 Feb; 50(4):1443-1452. PubMed ID: 33439164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane.
    Zaier I; Metin Ö
    Turk J Chem; 2021; 45(6):1725-1738. PubMed ID: 38144582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging trends in research and development on earth abundant materials for ammonia degradation coupled with H
    Zaidi Z; Kamlesh ; Gupta Y; Singhai S; Mudgal M; Singh A
    Sci Technol Adv Mater; 2024; 25(1):2301423. PubMed ID: 38357414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition.
    Lu AH; Nitz JJ; Comotti M; Weidenthaler C; Schlichte K; Lehmann CW; Terasaki O; Schüth F
    J Am Chem Soc; 2010 Oct; 132(40):14152-62. PubMed ID: 20849104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-loaded zeolites in ammonia decomposition catalysis.
    Leung KC; Tan E; Li G; Ng BKY; Ho PL; Lebedev K; Tsang SCE
    Faraday Discuss; 2023 Jul; 243(0):520-548. PubMed ID: 37186100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia.
    Chen S; Jelic J; Rein D; Najafishirtari S; Schmidt FP; Girgsdies F; Kang L; Wandzilak A; Rabe A; Doronkin DE; Wang J; Friedel Ortega K; DeBeer S; Grunwaldt JD; Schlögl R; Lunkenbein T; Studt F; Behrens M
    Nat Commun; 2024 Jan; 15(1):871. PubMed ID: 38286982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the Structure-Property Relationship of MgO-Supported Ni Ammonia Decomposition Catalysts from Bulk to Atomic Structure by In Situ/Operando Studies.
    Ulucan TH; Wang J; Onur E; Chen S; Behrens M; Weidenthaler C
    ACS Catal; 2024 Mar; 14(5):2828-2841. PubMed ID: 38449535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart paper transformer: new insight for enhanced catalytic efficiency and reusability of noble metal nanocatalysts.
    Jin Q; Ma L; Zhou W; Shen Y; Fernandez-Delgado O; Li X
    Chem Sci; 2020 Feb; 11(11):2915-2925. PubMed ID: 34122792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide.
    Jia X; Liu H; Zhang Y; Chen W; Tong Q; Piao G; Sun C; Dong L
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):427-441. PubMed ID: 32777626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese-rich MnSAPO-34 molecular sieves as an efficient catalyst for the selective catalytic reduction of NO
    Yu C; Chen F; Dong L; Liu X; Huang B; Wang X; Zhong S
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7499-7510. PubMed ID: 28116621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-SiO
    Hu XC; Wang WW; Gu YQ; Jin Z; Song QS; Jia CJ
    Chempluschem; 2017 Mar; 82(3):368-375. PubMed ID: 31962031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material Discovery and High Throughput Exploration of Ru Based Catalysts for Low Temperature Ammonia Decomposition.
    McCullough K; Chiang PH; Jimenez JD; Lauterbach JA
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient decomposition of ammonia using high-entropy alloy catalysts.
    Xie P; Yao Y; Huang Z; Liu Z; Zhang J; Li T; Wang G; Shahbazian-Yassar R; Hu L; Wang C
    Nat Commun; 2019 Sep; 10(1):4011. PubMed ID: 31488814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Bimetallic Catalysts for Hydrogen Production from Ammonia.
    Khan WU; Alasiri HS; Ali SA; Hossain MM
    Chem Rec; 2022 Jul; 22(7):e202200030. PubMed ID: 35475530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red Mud as an Efficient, Stable, and Cost-Free Catalyst for COx-Free Hydrogen Production from Ammonia.
    Kurtoğlu SF; Uzun A
    Sci Rep; 2016 Aug; 6():32279. PubMed ID: 27558766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Pore Confinement of NaNH
    Chang F; Wu H; Pluijm RV; Guo J; Ngene P; de Jongh PE
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(35):21487-21496. PubMed ID: 31523341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Synthesis of NiCoP Nanoparticles Supported on Reduced Graphene Oxide for the Catalytic Hydrolysis of Ammonia Borane.
    Yang C; Men Y; Xu Y; Liang L; Cai P; Luo W
    Chempluschem; 2019 Apr; 84(4):382-386. PubMed ID: 31939221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-Promoted Ammonia Decomposition over Supported Ruthenium Catalysts for CO
    Wang Z; He G; Zhang H; Liao C; Yang C; Zhao F; Lei G; Zheng G; Mao X; Zhang K
    ChemSusChem; 2023 Dec; 16(24):e202202370. PubMed ID: 37667438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.