These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37049695)

  • 1. The Application of Hyperspectral Imaging Technologies for the Prediction and Measurement of the Moisture Content of Various Agricultural Crops during the Drying Process.
    Taghinezhad E; Szumny A; Figiel A
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying.
    Pu YY; Sun DW
    Food Chem; 2015 Dec; 188():271-8. PubMed ID: 26041192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of drying temperature and salt pre-treatments on drying behavior and instrumental color and investigations on spectral product monitoring during drying of beef slices.
    von Gersdorff GJE; Kirchner SM; Hensel O; Sturm B
    Meat Sci; 2021 Aug; 178():108525. PubMed ID: 33932729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the effects of nonthermal pretreatments on the quality of microwave vacuum dehydrated beef using terahertz time-domain spectroscopy and near-infrared hyperspectral imaging.
    Ren Y; Fu Y; Sun DW
    Food Chem; 2023 Dec; 428():136753. PubMed ID: 37429244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review.
    Osae R; Essilfie G; Alolga RN; Akaba S; Song X; Owusu-Ansah P; Zhou C
    J Sci Food Agric; 2020 Apr; 100(6):2585-2599. PubMed ID: 31975406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process.
    Liu D; Sun DW; Qu J; Zeng XA; Pu H; Ma J
    Food Chem; 2014; 152():197-204. PubMed ID: 24444926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using hyperspectral imaging technology for assessing internal quality parameters of persimmon fruits during the drying process.
    Chen X; Jiao Y; Liu B; Chao W; Duan X; Yue T
    Food Chem; 2022 Aug; 386():132774. PubMed ID: 35358859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research advances in imaging technology for food safety and quality control].
    Deng Y; Wang X; Yang M; He M; Zhang F
    Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LeafSpec-Dicot: An Accurate and Portable Hyperspectral Imaging Device for Dicot Leaves.
    Li X; Chen Z; Wang J; Jin J
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Non-Destructive Estimation of Moisture Content in Caragana Korshinskii Pellet Feed Using Hyperspectral Imaging.
    Yu Z; Chen X; Zhang J; Su Q; Wang K; Liu W
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of biochemical, structural and volatile changes of dry-cured pork using a combined ion mobility spectrometry, hyperspectral and confocal imaging approach.
    Tian XY; Aheto JH; Huang X; Zheng K; Dai C; Wang C; Bai JW
    J Sci Food Agric; 2021 Nov; 101(14):5972-5983. PubMed ID: 33856705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing hyperspectral imaging and electronic nose data to predict moisture content in
    Wang J; Wang W; Xu W; An H; Ma Q; Sun J; Wang J
    Front Nutr; 2024; 11():1220131. PubMed ID: 38328485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ indirect measurements of real-time moisture contents during microwave vacuum drying of beef and carrot slices using terahertz time-domain spectroscopy.
    Ren Y; Lei T; Sun DW
    Food Chem; 2023 Aug; 418():135943. PubMed ID: 36989648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of moisture contents and rehydration rates of microwave vacuum and hot air dehydrated beef slices and splits using hyperspectral imaging.
    Ren Y; Sun DW
    Food Chem; 2022 Jul; 382():132346. PubMed ID: 35158274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Drying Patterns of Radish Slabs under Different Drying Methods Using Hyperspectral Imaging Coupled with Multivariate Analysis.
    Lee D; Lohumi S; Cho BK; Lee SH; Jung H
    Foods; 2020 Apr; 9(4):. PubMed ID: 32290547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: a review.
    Mao Y; Wang S
    Crit Rev Food Sci Nutr; 2023; 63(16):2654-2671. PubMed ID: 34583556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.
    Onwude DI; Hashim N; Abdan K; Janius R; Chen G
    J Sci Food Agric; 2018 Mar; 98(4):1310-1324. PubMed ID: 28758207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast.
    Kandpal LM; Lee H; Kim MS; Mo C; Cho BK
    Sensors (Basel); 2013 Sep; 13(10):13289-300. PubMed ID: 24084119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral imaging technology for monitoring of moisture contents of dried persimmons during drying process.
    Cho JS; Choi JY; Moon KD
    Food Sci Biotechnol; 2020 Oct; 29(10):1407-1412. PubMed ID: 32999748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.