These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37049940)

  • 1. Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor.
    Yang C; Li W; Liu X; Song X; Li H; Tan L
    Molecules; 2023 Apr; 28(7):. PubMed ID: 37049940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors.
    Song Y; Zhang M; Liu T; Li T; Guo D; Liu XX
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Applications of Cobalt-Oxide-Grafted Carbon Quantum Dot Nanocomposite for Two Electrode Asymmetric Supercapacitors and Photocatalytic Behavior.
    Shanmugasundaram E; Vellaisamy K; Ganesan V; Narayanan V; Saleh N; Thambusamy S
    ACS Omega; 2024 Mar; 9(12):14101-14117. PubMed ID: 38559980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melamine-based metal-organic frameworks for high-performance supercapacitor applications.
    Vanaraj R; Daniel S; Mayakrishnan G; Govindarasu Gunasekaran K; Arumugam B; Babu CM; Kim SC
    J Colloid Interface Sci; 2024 Jul; 666():380-392. PubMed ID: 38603880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework.
    Salunkhe RR; Tang J; Kamachi Y; Nakato T; Kim JH; Yamauchi Y
    ACS Nano; 2015 Jun; 9(6):6288-96. PubMed ID: 25978143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co@Carbon and Co
    Dai E; Xu J; Qiu J; Liu S; Chen P; Liu Y
    Sci Rep; 2017 Oct; 7(1):12588. PubMed ID: 28974746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimetal-organic frameworks derived redox-type composite materials for high-performance energy storage.
    Prabu S; Vinu M; Chiang KY; Pallavolu MR
    J Colloid Interface Sci; 2024 Sep; 669():624-636. PubMed ID: 38729010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Storage Performance of Electrode Materials Derived from Manganese Metal-Organic Frameworks.
    Ryoo G; Kim SK; Lee DK; Kim YJ; Han YS; Jung KH
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled from nanorods and nanospheres for outstanding supercapacitors.
    Zhou P; Wan J; Wang X; Xu K; Gong Y; Chen L
    J Colloid Interface Sci; 2020 Sep; 575():96-107. PubMed ID: 32361050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ formation of Co
    Devi RK; Muthusankar G; Chen SM; Gopalakrishnan G
    Mikrochim Acta; 2021 May; 188(6):196. PubMed ID: 34036435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of ZIF-Derived Nanoporous Carbon and Cobalt Sulfide-Based Electrode Material for Supercapacitor.
    Ahmad R; Iqbal N; Noor T
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of cobalt-based MOFs for super-capacitor electrode materials of new energy vehicle.
    Jin X; Jiang Z; Feng Y; Fang X
    Heliyon; 2024 May; 10(10):e31222. PubMed ID: 38803895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When Conductive MOFs Meet MnO
    Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevating Supercapacitor Performance of Co
    Yewale MA; Kumar V; Teli AM; Beknalkar SA; Nakate UT; Shin DK
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous ZnO-Coated Co
    Gao M; Wang WK; Rong Q; Jiang J; Zhang YJ; Yu HQ
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23163-23173. PubMed ID: 29923396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Organic Framework Derived Porous Hollow Co
    Kang W; Zhang Y; Fan L; Zhang L; Dai F; Wang R; Sun D
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10602-10609. PubMed ID: 28287697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Construction of ZIF-67-Derived Hybrid Tricobalt Tetraoxide@Carbon for Supercapacitor.
    Gong H; Bie S; Zhang J; Ke X; Wang X; Liang J; Wu N; Zhang Q; Luo C; Jia Y
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Metal-Organic Framework Nanosheet-Derived Ultrathin Co
    Wei G; Zhou Z; Zhao X; Zhang W; An C
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23721-23730. PubMed ID: 29947226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode.
    Kumar R; Singh RK; Dubey PK; Singh DP; Yadav RM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15042-51. PubMed ID: 26086175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.