These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37050370)
1. Novel Airflow-Field-Driven Melt Spinning 3D Printing of Tubular Scaffolds Based on Polycaprolactone Blends. Zhang J; Peng Z; Wang M; Li Y; Wu J; Jiang Y; Liu C; Li G; Xu L; Lan H Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050370 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
3. Statistical modelling and optimization of print quality and mechanical properties of customized tubular scaffolds fabricated using solvent-based extrusion 3D printing process. Kandi R; Pandey PM Proc Inst Mech Eng H; 2021 Dec; 235(12):1421-1438. PubMed ID: 34269125 [TBL] [Abstract][Full Text] [Related]
4. 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques. Zimmerling A; Yazdanpanah Z; Cooper DML; Johnston JD; Chen X Biomater Res; 2021 Jan; 25(1):3. PubMed ID: 33499957 [TBL] [Abstract][Full Text] [Related]
5. Preparation of 3D Printed Polylactic Acid/Bacterial Cellulose Composite Scaffold for Tissue Engineering Applications. Wu Y; Wang Y; Wang F; Huang Y; He J Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365749 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Cheng CH; Shie MY; Lai YH; Foo NP; Lee MJ; Yao CH Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771286 [TBL] [Abstract][Full Text] [Related]
8. 3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. Kilian D; von Witzleben M; Lanaro M; Wong CS; Vater C; Lode A; Allenby MC; Woodruff MA; Gelinsky M J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735931 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair. Hamid OA; Eltaher HM; Sottile V; Yang J Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866 [TBL] [Abstract][Full Text] [Related]
10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
11. [Study on the preparation of polycaprolactone/type Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332 [TBL] [Abstract][Full Text] [Related]
12. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
13. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment. Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263 [TBL] [Abstract][Full Text] [Related]
14. Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds. Chen Z; Liu Y; Huang J; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015663 [TBL] [Abstract][Full Text] [Related]
15. Fiber Forming Capability of Binary and Ternary Compositions in the Polymer System: Bacterial Cellulose-Polycaprolactone-Polylactic Acid. Aydogdu MO; Altun E; Ahmed J; Gunduz O; Edirisinghe M Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277438 [TBL] [Abstract][Full Text] [Related]
16. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair. Li H; Yin Y; Xiang Y; Liu H; Guo R Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713 [TBL] [Abstract][Full Text] [Related]
17. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea. Yu HS; Park J; Lee HS; Park SA; Lee DW; Park K World J Mens Health; 2018 Jan; 36(1):66-72. PubMed ID: 29076301 [TBL] [Abstract][Full Text] [Related]
19. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer. Yoon YI; Park KE; Lee SJ; Park WH Biomed Res Int; 2013; 2013():309048. PubMed ID: 24381937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]