These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37050374)

  • 1. Bacterial Nanocellulose from
    Villarreal-Rueda J; Zapata-Benabithe Z; Posada L; Martínez E; Herrera S; López S; Sobrido ABJ; Castro CI
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated Carbon Electrodes for Supercapacitors from Purple Corncob (
    Huarote-Garcia E; Cardenas-Riojas AA; Monje IE; López EO; Arias-Pinedo OM; Planes GA; Baena-Moncada AM
    ACS Environ Au; 2024 Mar; 4(2):80-88. PubMed ID: 38525024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H
    Breitenbach S; Duchoslav J; Mardare AI; Unterweger C; Stifter D; Hassel AW; Fürst C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electrochemical evaluation of renewable carbons and their composites on different carbonization temperatures for supercapacitor applications.
    Shrestha D
    Heliyon; 2024 Feb; 10(4):e25628. PubMed ID: 38370182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of
    Shrestha D; Rajbhandari A
    Heliyon; 2021 Sep; 7(9):e07917. PubMed ID: 34522810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Materials Prepared from Invading Pelagic Sargassum for Supercapacitors' Electrodes.
    Roche S; Yacou C; Jean Marius C; Ranguin R; Francoeur M; Taberna PL; Passe-Coutrin N; Gaspard S
    Molecules; 2023 Aug; 28(15):. PubMed ID: 37570852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen doped hierarchical activated carbons derived from polyacrylonitrile fibers for CO
    Zheng L; Li WB; Chen JL
    RSC Adv; 2018 Aug; 8(52):29767-29774. PubMed ID: 35547272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-induced interconnected networks in microporous activated carbons from palm petiole under NaNO
    Benwannamas N; Sangtawesin T; Yilmaz M; Kanjana K
    Sci Rep; 2023 Aug; 13(1):12887. PubMed ID: 37558768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercapacitors from Activated Carbon Derived from Granatum.
    Wang Q; Yang L; Wang Z; Chen K; Zhang L
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9672-8. PubMed ID: 26682395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of kenaf-based activated carbon monolith for supercapacitor electrode applications.
    Park HY; Huang M; Yoon TH; Song KH
    RSC Adv; 2021 Nov; 11(61):38515-38522. PubMed ID: 35493259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical properties of an activated carbon xerogel monolith from resorcinol-formaldehyde for supercapacitor electrode applications.
    Huang M; Yoo SJ; Lee JS; Yoon TH
    RSC Adv; 2021 Oct; 11(53):33192-33201. PubMed ID: 35497528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of activated biomass carbon from tea leaf for supercapacitor applications.
    Thirumal V; Yuvakkumar R; Ravi G; Dineshkumar G; Ganesan M; Alotaibi SH; Velauthapillai D
    Chemosphere; 2022 Mar; 291(Pt 2):132931. PubMed ID: 34793843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob.
    Kigozi M; Kali R; Bello A; Padya B; Kalu-Uka GM; Wasswa J; Jain PK; Onwualu PA; Dzade NY
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitins from Seafood Waste as Sustainable Porous Carbon Precursors for the Development of Eco-Friendly Supercapacitors.
    Brandão ATSC; Costa R; State S; Potorac P; Dias C; Vázquez JA; Valcarcel J; Silva AF; Enachescu M; Pereira CM
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Barakat NAM; Irfan OM; Moustafa HM
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615488
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Shrestha LK; Shahi S; Gnawali CL; Adhikari MP; Rajbhandari R; Pokharel BP; Ma R; Shrestha RG; Ariga K
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells.
    Mohammed AA; Chen C; Zhu Z
    J Colloid Interface Sci; 2019 Mar; 538():308-319. PubMed ID: 30530028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors.
    Alcaraz L; Adán-Más A; Arévalo-Cid P; Montemor MF; López FA
    Front Chem; 2020; 8():686. PubMed ID: 32923425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Dioxide Adsorption over Activated Carbons Produced from Molasses Using H
    Kiełbasa K; Bayar Ş; Varol EA; Sreńscek-Nazzal J; Bosacka M; Miądlicki P; Serafin J; Wróbel RJ; Michalkiewicz B
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.