These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37050379)

  • 1. Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies.
    Li L; Guo J; Kang C; Song H
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogels prepared from cellulose nanofibrils via ferric ion-mediated crosslinking reaction for protecting drilling fluid.
    Liu X; Qu J; Wang A; Wang C; Chen B; Wang Z; Wu B; Wei B; Wen Y; Yuan Z
    Carbohydr Polym; 2019 May; 212():67-74. PubMed ID: 30832882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tough chitosan/poly(acrylamide-acrylic acid)/cellulose nanofibrils/ethylene glycol nanocomposite organohydrogel with tolerance to hot and cold environments.
    Jiang Z; Guo L; Yuan F; Wang J; Jiang X
    Int J Biol Macromol; 2021 Sep; 186():952-961. PubMed ID: 34237375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and physical reinforcement behavior of dialdehyde nanocellulose in PVA composite film: A comparison of nanofiber and nanocrystal.
    Lee H; You J; Jin HJ; Kwak HW
    Carbohydr Polym; 2020 Mar; 232():115771. PubMed ID: 31952584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive cellulose nanofibrils-reinforced hydrogels with synergetic strength, toughness, self-adhesion, flexibility and adjustable strain responsiveness.
    Lu J; Han X; Dai L; Li C; Wang J; Zhong Y; Yu F; Si C
    Carbohydr Polym; 2020 Dec; 250():117010. PubMed ID: 33049871
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhao H; Zhang Y; Liu Y; Zheng P; Gao T; Cao Y; Liu X; Yin J; Pei R
    Biomacromolecules; 2021 Dec; 22(12):5097-5107. PubMed ID: 34723499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Favorable combination of foldability and toughness of transparent cellulose nanofibril films by a PET fiber-reinforced strategy.
    Zhang D; Li G; Liu Y; Hou G; Cui J; Xie H; Zhang S; Sun Z; Fang Z
    Int J Biol Macromol; 2020 Dec; 164():3268-3274. PubMed ID: 32866525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology.
    Liu Q; Liu J; Qin S; Pei Y; Zheng X; Tang K
    Int J Biol Macromol; 2020 Dec; 164():1776-1784. PubMed ID: 32791281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption.
    Gao G; Du G; Cheng Y; Fu J
    J Mater Chem B; 2014 Mar; 2(11):1539-1548. PubMed ID: 32261372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of CNF with Different Charge Property into PVP Hydrogel and Its Characteristics.
    Im W; Park SY; Goo S; Yook S; Lee HL; Yang G; Youn HJ
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33567602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties.
    Niu J; Wang J; Dai X; Shao Z; Huang X
    Carbohydr Polym; 2018 Aug; 193():73-81. PubMed ID: 29773399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability.
    Zhang T; Zuo T; Hu D; Chang C
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor.
    Tie J; Chai H; Mao Z; Zhang L; Zhong Y; Sui X; Xu H
    Carbohydr Polym; 2021 Dec; 273():118600. PubMed ID: 34561000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing.
    Huang H; Zhang X; Dong Z; Zhao X; Guo B
    J Colloid Interface Sci; 2022 Nov; 625():817-830. PubMed ID: 35772209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Mesoporous Polydopamine@GO/Cellulose Nanofibril Composite Hydrogel with an Encapsulation Structure for Controllable Drug Release and Toxicity Shielding.
    Liu Y; Fan Q; Huo Y; Liu C; Li B; Li Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57410-57420. PubMed ID: 33289538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate-Chlorite Oxidation.
    Guo M; Ede JD; Sayes CM; Shatkin JA; Stark N; Hsieh YL
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of conductive protein-based film reinforced by cellulose nanofibril template-directed hyperbranched copolymer.
    Jin S; Li K; Gao Q; Zhang W; Chen H; Li J
    Carbohydr Polym; 2020 Jun; 237():116141. PubMed ID: 32241428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.