These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37050563)

  • 1. Head-Mounted Miniature Motorized Camera and Laser Pointer Driven by Eye Movements.
    Nourrit V; Lamour JB; Abiven B; Fracasso B; de Bougrenet de la Tocnaye JL
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EyeSeeCam: an eye movement-driven head camera for the examination of natural visual exploration.
    Schneider E; Villgrattner T; Vockeroth J; Bartl K; Kohlbecher S; Bardins S; Ulbrich H; Brandt T
    Ann N Y Acad Sci; 2009 May; 1164():461-7. PubMed ID: 19645949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise estimation for head-mounted 3D binocular eye tracking using Pupil Core eye-tracking goggles.
    Velisar A; Shanidze NM
    Behav Res Methods; 2024 Jan; 56(1):53-79. PubMed ID: 37369939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Documentation and teaching of surgery with an eye movement driven head-mounted camera: see what the surgeon sees and does.
    Schneider E; Bartl K; Dera T; Böning G; Wagner P; Brandt T
    Stud Health Technol Inform; 2006; 119():486-90. PubMed ID: 16404105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do You See What I See? The Effect of Gaze Tracking on Task Space Remote Collaboration.
    Gupta K; Lee GA; Billinghurst M
    IEEE Trans Vis Comput Graph; 2016 Nov; 22(11):2413-22. PubMed ID: 27479970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of handheld marker to calibrate a field-programmable gate array based eye tracker for artificial vision system.
    Caspi A; Roy A; Barry MP; Sadeghi R; Kartha A; Dagnelie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3323-3326. PubMed ID: 33018715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical documentation using a gaze-driven camera.
    Vockeroth J; Bartl K; Pfanzelt S; Schneider E
    Stud Health Technol Inform; 2009; 142():413-6. PubMed ID: 19377196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of surgical recordings using cameras with and without laser pointer for focusing in gastrointestinal surgical field in COVID-19 pandemic: A cross-sectional study.
    Adeodatus YH; Fauzi AR; Andrew J; Hanif AS; Kresna Aditya AF
    Ann Med Surg (Lond); 2021 Jan; 61():19-23. PubMed ID: 33363722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recording eye movements using coaxial cameras--applications for visual ergonomics and reading studies.
    Hazel CA; Johnston AW
    Optom Vis Sci; 1995 Sep; 72(9):679-83. PubMed ID: 8532309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Correlation between 3D Surface Roughness and Laser Speckle Pattern for Experimental Setup Using He-Ne as Laser Source and Laser Pointer as Laser Source.
    Jayabarathi SB; Ratnam MM
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What do surgeons see: capturing and synchronizing eye gaze for surgery applications.
    Atkins MS; Tien G; Khan RS; Meneghetti A; Zheng B
    Surg Innov; 2013 Jun; 20(3):241-8. PubMed ID: 22696024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Calibration of Odometry and Head-Eye Parameters for Mobile Robots with a Pan-Tilt Camera.
    Chindakham N; Kim YY; Pirayawaraporn A; Jeong MH
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head movement compensation and multi-modal event detection in eye-tracking data for unconstrained head movements.
    Larsson L; Schwaller A; Nyström M; Stridh M
    J Neurosci Methods; 2016 Dec; 274():13-26. PubMed ID: 27693470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A holographic waveguide based eye tracking device.
    Liu C; Pazzucconi B; Liu J; Liu L; Yao X
    J Mod Opt; 2019; 66(12):1311-1317. PubMed ID: 32071489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speed and accuracy of head- and eye-based aiming systems at high vertical acceleration.
    Ineson J; Durnell L; Ebbage JL; Jarrett DN; Neary C; Reed MA
    Aviat Space Environ Med; 2004 May; 75(5):420-8. PubMed ID: 15152894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, stray light analysis, and fabrication of a compact head-mounted display using freeform prisms.
    Cheng D; Chen H; Yao C; Hou Q; Hou W; Wei L; Yang T; Wang Y
    Opt Express; 2022 Sep; 30(20):36931-36948. PubMed ID: 36258613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.
    Hamel J; Kraft A; Ohl S; De Beukelaer S; Audebert HJ; Brandt SA
    J Vis Exp; 2012 Sep; (67):e4427. PubMed ID: 23023223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze and eye-tracking solutions for psychological research.
    Mele ML; Federici S
    Cogn Process; 2012 Aug; 13 Suppl 1():S261-5. PubMed ID: 22810423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.