These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37050578)

  • 1. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification.
    Triana-Martinez JC; Gil-González J; Fernandez-Gallego JA; Álvarez-Meza AM; Castellanos-Dominguez CG
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated Chained Gaussian Processes for Datasets With Multiple Annotators.
    Gil-Gonzalez J; Giraldo JJ; Alvarez-Meza AM; Orozco-Gutierrez A; Alvarez MA
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4514-4528. PubMed ID: 34633937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning from multiple annotators for medical image segmentation.
    Zhang L; Tanno R; Xu M; Huang Y; Bronik K; Jin C; Jacob J; Zheng Y; Shao L; Ciccarelli O; Barkhof F; Alexander DC
    Pattern Recognit; 2023 Jun; 138():None. PubMed ID: 37781685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning from crowds for automated histopathological image segmentation.
    López-Pérez M; Morales-Álvarez P; Cooper LAD; Felicelli C; Goldstein J; Vadasz B; Molina R; Katsaggelos AK
    Comput Med Imaging Graph; 2024 Mar; 112():102327. PubMed ID: 38194768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling confidence for uncertainty-aware histology image classification.
    Del Amor R; Silva-Rodríguez J; Naranjo V
    Comput Med Imaging Graph; 2023 Jul; 107():102231. PubMed ID: 37087899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.
    Nissim N; Shahar Y; Elovici Y; Hripcsak G; Moskovitch R
    Artif Intell Med; 2017 Sep; 81():12-32. PubMed ID: 28456512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep semi-supervised multiple instance learning with self-correction for DME classification from OCT images.
    Wang X; Tang F; Chen H; Cheung CY; Heng PA
    Med Image Anal; 2023 Jan; 83():102673. PubMed ID: 36403310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling annotator preference and stochastic annotation error for medical image segmentation.
    Liao Z; Hu S; Xie Y; Xia Y
    Med Image Anal; 2024 Feb; 92():103028. PubMed ID: 38070453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semantic and Generalized Entropy Loss Functions for Semi-Supervised Deep Learning.
    Gajowniczek K; Liang Y; Friedman T; Ząbkowski T; Van den Broeck G
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning From Multiple Noisy Annotators as A Union.
    Wei H; Xie R; Feng L; Han B; An B
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10552-10562. PubMed ID: 35486555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Joint Gaussian Process Model for Active Visual Recognition with Expertise Estimation in Crowdsourcing.
    Long C; Hua G; Kapoor A
    Int J Comput Vis; 2016 Jan; 116(2):136-160. PubMed ID: 26924892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Learning Plus Deep Learning Can Establish Cost-Effective and Robust Model for Multichannel Image: A Case on Hyperspectral Image Classification.
    Shi F; Wang Z; Hu M; Zhai G
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning by aggregating experts and filtering novices: a solution to crowdsourcing problems in bioinformatics.
    Zhang P; Cao W; Obradovic Z
    BMC Bioinformatics; 2013; 14 Suppl 12(Suppl 12):S5. PubMed ID: 24268030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crowdsourcing with the drift diffusion model of decision making.
    Lalvani S; Katsaggelos A
    Sci Rep; 2024 May; 14(1):11311. PubMed ID: 38760397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization.
    Chikontwe P; Jung Sung H; Jeong J; Kim M; Go H; Jeong Nam S; Hyun Park S
    Med Image Anal; 2022 Aug; 80():102482. PubMed ID: 35688048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable Label-Efficient Learning for Biomedical Image Recognition.
    Gu Y; Shen M; Yang J; Yang GZ
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2423-2432. PubMed ID: 30596566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-LIFT: Deep Label-Specific Feature Learning for Image Annotation.
    Li J; Zhang C; Zhou JT; Fu H; Xia S; Hu Q
    IEEE Trans Cybern; 2022 Aug; 52(8):7732-7741. PubMed ID: 33566780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wasserstein Adversarial Regularization for Learning With Label Noise.
    Fatras K; Damodaran BB; Lobry S; Flamary R; Tuia D; Courty N
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7296-7306. PubMed ID: 34232864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triplet Deep Hashing with Joint Supervised Loss Based on Deep Neural Networks.
    Li M; An Z; Wei Q; Xiang K; Ma Y
    Comput Intell Neurosci; 2019; 2019():8490364. PubMed ID: 31687007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to segment subcortical structures from noisy annotations with a novel uncertainty-reliability aware learning framework.
    Li X; Wei Y; Hu Q; Wang C; Yang J
    Comput Biol Med; 2022 Dec; 151(Pt B):106326. PubMed ID: 36442274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.