These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 37050604)
1. Three-Dimensional Human Pose Estimation from Sparse IMUs through Temporal Encoder and Regression Decoder. Liao X; Dong J; Song K; Xiao J Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050604 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing 3D human pose and shape from a single image and sparse IMUs. Liao X; Zhuang J; Liu Z; Dong J; Song K; Xiao J PeerJ Comput Sci; 2023; 9():e1401. PubMed ID: 37346531 [TBL] [Abstract][Full Text] [Related]
3. Wearable Motion Capture: Reconstructing and Predicting 3D Human Poses From Wearable Sensors. Moniruzzaman M; Yin Z; Hossain MSB; Choi H; Guo Z IEEE J Biomed Health Inform; 2023 Nov; 27(11):5345-5356. PubMed ID: 37665702 [TBL] [Abstract][Full Text] [Related]
4. Fusion Poser: 3D Human Pose Estimation Using Sparse IMUs and Head Trackers in Real Time. Kim M; Lee S Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808342 [TBL] [Abstract][Full Text] [Related]
5. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis. Halilaj E; Shin S; Rapp E; Xiang D J Biomech; 2021 Dec; 129():110650. PubMed ID: 34644610 [TBL] [Abstract][Full Text] [Related]
7. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning. Zimmermann T; Taetz B; Bleser G Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262 [TBL] [Abstract][Full Text] [Related]
8. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs). Rihar A; Mihelj M; Pašič J; Kolar J; Munih M J Neuroeng Rehabil; 2014 Sep; 11():133. PubMed ID: 25194825 [TBL] [Abstract][Full Text] [Related]
9. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. Berner K; Cockcroft J; Morris LD; Louw Q J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520 [TBL] [Abstract][Full Text] [Related]
10. On Inertial Body Tracking in the Presence of Model Calibration Errors. Miezal M; Taetz B; Bleser G Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266 [TBL] [Abstract][Full Text] [Related]
11. Masked Kinematic Continuity-aware Hierarchical Attention Network for pose estimation in videos. Jin KM; Lee GH; Nam WJ; Kang TK; Kim HW; Lee SW Neural Netw; 2024 Jan; 169():282-292. PubMed ID: 37918271 [TBL] [Abstract][Full Text] [Related]
12. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Robert-Lachaine X; Mecheri H; Larue C; Plamondon A Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850 [TBL] [Abstract][Full Text] [Related]
13. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living. Hossain MSB; Dranetz J; Choi H; Guo Z IEEE J Biomed Health Inform; 2022 Aug; 26(8):3906-3917. PubMed ID: 35385394 [TBL] [Abstract][Full Text] [Related]
14. Resolving Position Ambiguity of IMU-Based Human Pose with a Single RGB Camera. Kaichi T; Maruyama T; Tada M; Saito H Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977436 [TBL] [Abstract][Full Text] [Related]
15. Real-Time IMU-Based Kinematics in the Presence of Wireless Data Drop. Zhu K; Li D; Li J; Shull PB IEEE J Biomed Health Inform; 2024 Nov; 28(11):6512-6524. PubMed ID: 39042542 [TBL] [Abstract][Full Text] [Related]
16. Validation of a model-based inverse kinematics approach based on wearable inertial sensors. Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324 [TBL] [Abstract][Full Text] [Related]
17. PVRED: A Position-Velocity Recurrent Encoder-Decoder for Human Motion Prediction. Wang H; Dong J; Cheng B; Feng J IEEE Trans Image Process; 2021; 30():6096-6106. PubMed ID: 34185641 [TBL] [Abstract][Full Text] [Related]
18. 3D gait analysis in children using wearable sensors: feasibility of predicting joint kinematics and kinetics with personalized machine learning models and inertial measurement units. Mohammadi Moghadam S; Ortega Auriol P; Yeung T; Choisne J Front Bioeng Biotechnol; 2024; 12():1372669. PubMed ID: 38572359 [No Abstract] [Full Text] [Related]
19. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks. Senanayake D; Halgamuge S; Ackland DC J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661 [TBL] [Abstract][Full Text] [Related]
20. Fusion of Multiple Lidars and Inertial Sensors for the Real-Time Pose Tracking of Human Motion. Patil AK; Balasubramanyam A; Ryu JY; B N PK; Chakravarthi B; Chai YH Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]