These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37050625)
1. A Method for Stress Detection Using Empatica E4 Bracelet and Machine-Learning Techniques. Campanella S; Altaleb A; Belli A; Pierleoni P; Palma L Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050625 [TBL] [Abstract][Full Text] [Related]
2. PPG and EDA dataset collected with Empatica E4 for stress assessment. Campanella S; Altaleb A; Belli A; Pierleoni P; Palma L Data Brief; 2024 Apr; 53():110102. PubMed ID: 38328286 [TBL] [Abstract][Full Text] [Related]
3. A machine-learning approach for stress detection using wearable sensors in free-living environments. Abd Al-Alim M; Mubarak R; M Salem N; Sadek I Comput Biol Med; 2024 Sep; 179():108918. PubMed ID: 39029434 [TBL] [Abstract][Full Text] [Related]
4. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895 [TBL] [Abstract][Full Text] [Related]
5. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
6. Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study. Aqajari SAH; Cao R; Kasaeyan Naeini E; Calderon MD; Zheng K; Dutt N; Liljeberg P; Salanterä S; Nelson AM; Rahmani AM JMIR Mhealth Uhealth; 2021 May; 9(5):e25258. PubMed ID: 33949957 [TBL] [Abstract][Full Text] [Related]
7. Multimodal wrist-worn devices for seizure detection and advancing research: Focus on the Empatica wristbands. Regalia G; Onorati F; Lai M; Caborni C; Picard RW Epilepsy Res; 2019 Jul; 153():79-82. PubMed ID: 30846346 [TBL] [Abstract][Full Text] [Related]
8. A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensors. Garcia-Moreno FM; Bermudez-Edo M; Rodríguez-García E; Pérez-Mármol JM; Garrido JL; Rodríguez-Fórtiz MJ Int J Med Inform; 2022 Jan; 157():104625. PubMed ID: 34763192 [TBL] [Abstract][Full Text] [Related]
9. FLIRT: A feature generation toolkit for wearable data. Föll S; Maritsch M; Spinola F; Mishra V; Barata F; Kowatsch T; Fleisch E; Wortmann F Comput Methods Programs Biomed; 2021 Nov; 212():106461. PubMed ID: 34736174 [TBL] [Abstract][Full Text] [Related]
10. Multi-Modal Acute Stress Recognition Using Off-the-Shelf Wearable Devices. Montesinos V; Dell'Agnola F; Arza A; Aminifar A; Atienza D Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2196-2201. PubMed ID: 31946337 [TBL] [Abstract][Full Text] [Related]
12. Predicting Chronic Kidney Disease Using Hybrid Machine Learning Based on Apache Spark. Abdel-Fattah MA; Othman NA; Goher N Comput Intell Neurosci; 2022; 2022():9898831. PubMed ID: 35251161 [TBL] [Abstract][Full Text] [Related]
13. Wearable Flexible Electronics Based Cardiac Electrode for Researcher Mental Stress Detection System Using Machine Learning Models on Single Lead Electrocardiogram Signal. Bin Heyat MB; Akhtar F; Abbas SJ; Al-Sarem M; Alqarafi A; Stalin A; Abbasi R; Muaad AY; Lai D; Wu K Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735574 [TBL] [Abstract][Full Text] [Related]
14. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Senan EM; Abunadi I; Jadhav ME; Fati SM Comput Math Methods Med; 2021; 2021():8500314. PubMed ID: 34966445 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning-Based Multimodal Data Fusion: Case Study in Food Intake Episodes Detection Using Wearable Sensors. Bahador N; Ferreira D; Tamminen S; Kortelainen J JMIR Mhealth Uhealth; 2021 Jan; 9(1):e21926. PubMed ID: 33507156 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of Machine Learning Techniques for Traffic Flow-Based Intrusion Detection. Rodríguez M; Alesanco Á; Mehavilla L; García J Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502028 [TBL] [Abstract][Full Text] [Related]
17. An Explainable Deep Learning Approach for Stress Detection in Wearable Sensor Measurements. Moser MK; Ehrhart M; Resch B Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204782 [TBL] [Abstract][Full Text] [Related]
18. Global Stress Detection Framework Combining a Reduced Set of HRV Features and Random Forest Model. Dahal K; Bogue-Jimenez B; Doblas A Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299947 [TBL] [Abstract][Full Text] [Related]
19. Ictal autonomic activity recorded via wearable-sensors plus machine learning can discriminate epileptic and psychogenic nonepileptic seizures. Zsom A; Tsekhan S; Hamid T; Levin J; Truccolo W; LaFrance WC; Blum AS; Li P; Wahed LA; Shaikh MA; Sharma G; Ranieri R; Zhang L Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3502-3506. PubMed ID: 31946633 [TBL] [Abstract][Full Text] [Related]
20. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning. Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]