BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37050649)

  • 1. Multiparametric Quantitative Analysis of Photodamage to Skin Using Optical Coherence Tomography.
    Tang H; Xu C; Ge Y; Xu M; Wang L
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology.
    Gambichler T; Boms S; Stücker M; Moussa G; Kreuter A; Sand M; Sand D; Altmeyer P; Hoffmann K
    Arch Dermatol Res; 2005 Nov; 297(5):218-25. PubMed ID: 16215762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated exposure to fractional CO
    Olesen UH; Jacobsen K; Lerche CM; Haedersdal M
    Lasers Surg Med; 2023 Jan; 55(1):73-81. PubMed ID: 36229986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic quantitative analysis of structure parameters in the growth cycle of artificial skin using optical coherence tomography.
    Zhao R; Tang H; Xu C; Ge Y; Wang L; Xu M
    J Biomed Opt; 2021 Sep; 26(9):. PubMed ID: 34472244
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Chen WJ; Chang YY; Shen SC; Tzeng YL; Lee HC; Yang CH; Tsai MT
    Biomed Opt Express; 2018 Sep; 9(9):4235-4245. PubMed ID: 30615717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing changes in facial skin quality using noninvasive in vivo clinical skin imaging techniques after use of a topical retinoid product in subjects with moderate-to-severe photodamage.
    Goberdhan LT; Pellacani G; Ardigo M; Schneider K; Makino ET; Mehta RC
    Skin Res Technol; 2022 Jul; 28(4):604-613. PubMed ID: 35691012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Identification of Skin Photodamage Induced by Fractional CO
    Ng CY; Wang TA; Lee HC; Huang BH; Tsai MT
    Diagnostics (Basel); 2022 Mar; 12(4):. PubMed ID: 35453872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography quantifying photo aging: skin microvasculature depth, epidermal thickness and UV exposure.
    Olsen J; Gaetti G; Grandahl K; Jemec GBE
    Arch Dermatol Res; 2022 Jul; 314(5):469-476. PubMed ID: 34109468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for assessing the degree of photodamage to skin: a systematic review of the literature.
    Baillie L; Askew D; Douglas N; Soyer HP
    Br J Dermatol; 2011 Oct; 165(4):735-42. PubMed ID: 21574981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking of cutaneous vascular structural changes post-UV irradiation using optical coherence tomography angiography.
    Ninomiya M; Hara Y; Kubo Y; Yamashita T; Katagiri C
    Photodermatol Photoimmunol Photomed; 2020 May; 36(3):226-232. PubMed ID: 32107789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical features for chronological aging and photoaging skin by optical coherence tomography.
    Wu S; Li H; Zhang X; Li Z
    Lasers Med Sci; 2013 Feb; 28(2):445-50. PubMed ID: 22415573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Light and Energy-Based Therapy by Optical Coherence Tomography and Reflectance Confocal Microscopy: A Randomized Trial of Photoaged Skin.
    Mogensen M; Hendel K; Ung V; Wenande E; Togsverd-Bo K; Forman JL; Haedersdal M
    Dermatology; 2022; 238(3):422-429. PubMed ID: 34515098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence tomography characterizes the roughness and thickness of the heterogeneous layer on cortical bone surface induced by Er:YAG laser ablation at different moisture contents.
    Huang W; Gao C; Lan Y; Zeng S; Pathak JL; Zhou M; Ge L; Zhang J
    Quant Imaging Med Surg; 2020 Mar; 10(3):713-726. PubMed ID: 32269931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative optical coherence tomography of skin lesions induced by different ultraviolet B sources.
    Liu Z; Guo Z; Zhuang Z; Zhai J; Xiong H; Zeng C
    Phys Med Biol; 2010 Oct; 55(20):6175-85. PubMed ID: 20876971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography applied to tests of skin care products in humans--a case study.
    Vasquez-Pinto LM; Maldonado EP; Raele MP; Amaral MM; de Freitas AZ
    Skin Res Technol; 2015 Feb; 21(1):90-3. PubMed ID: 25066480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional 1,927 nm Thulium Laser Plus Photodynamic Therapy Compared and Combined for Photodamaged Décolleté Skin: A Side-by-Side Randomized Controlled Trial.
    Hendel K; Mogensen M; Wenande E; Dierickx C; Haedersdal M; Togsverd-Bo K
    Lasers Surg Med; 2020 Jan; 52(1):44-52. PubMed ID: 31788828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Coherence Tomography Imaging of Normal, Chronologically Aged, Photoaged and Photodamaged Skin: A Systematic Review.
    Mamalis A; Ho D; Jagdeo J
    Dermatol Surg; 2015 Sep; 41(9):993-1005. PubMed ID: 26322560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods of Non-Invasive In Vivo Optical Diagnostics in the Assessment of Structural Changes in the Skin Induced by Ultraviolet Exposure in an Experimental Model.
    Kulikov D; Makmatov-Rys M; Raznitsyna I; Glazkova P; Gerzhik A; Glazkov A; Andreeva V; Kassina D; Rogatkin D
    Diagnostics (Basel); 2021 Aug; 11(8):. PubMed ID: 34441398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography of basal cell carcinoma: density and signal attenuation.
    Yücel D; Themstrup L; Manfredi M; Jemec GB
    Skin Res Technol; 2016 Nov; 22(4):497-504. PubMed ID: 27264340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.