BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37050683)

  • 1. Single-Cell Isolation Microfluidic Chip Based on Thermal Bubble Micropump Technology.
    Xu C; Wang K; Huang P; Liu D; Guan Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free single-cell isolation enabled by microfluidic impact printing and real-time cellular recognition.
    Wang Y; Wang X; Pan T; Li B; Chu J
    Lab Chip; 2021 Sep; 21(19):3695-3706. PubMed ID: 34581393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exceeding 80% Efficiency of Single-Bead Encapsulation in Microdroplets through Hydrogel Coating-Assisted Close-Packed Ordering.
    Chen L; Zhao Y; Li J; Xiong C; Xu Y; Tang C; Zhang R; Zhang J; Mi X; Liu Y
    Anal Chem; 2023 Jun; 95(23):8889-8897. PubMed ID: 37233805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The up-to-date strategies for the isolation and manipulation of single cells.
    Zhang X; Wei X; Wei Y; Chen M; Wang J
    Talanta; 2020 Oct; 218():121147. PubMed ID: 32797903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual-Channel Microfluidic Chip for Single Tobacco Protoplast Isolation and Dynamic Capture.
    Zhang H; Geng Q; Sun Z; Zhong X; Yang Y; Zhang S; Li Y; Zhang Y; Sun L
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic nanoparticle-mediated enrichment technology combined with microfluidic single cell separation technology: A technology for efficient separation and degradation of functional bacteria in single cell liquid phase.
    Xuan Y; Yin M; Sun Y; Liu M; Bai G; Diao Z; Ma B
    Bioresour Technol; 2024 Jun; 401():130686. PubMed ID: 38599351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell analysis and sorting using droplet-based microfluidics.
    Mazutis L; Gilbert J; Ung WL; Weitz DA; Griffiths AD; Heyman JA
    Nat Protoc; 2013 May; 8(5):870-91. PubMed ID: 23558786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Chip for Efficient Circulating Tumor Cells Enrichment, Screening, and Single-Cell RNA Sequencing.
    Shi F; Jia F; Wei Z; Ma Y; Fang Z; Zhang W; Hu Z
    Proteomics; 2021 Feb; 21(3-4):e2000060. PubMed ID: 33219587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidic stick-and-play micropump built on foil for single-cell trapping.
    Lin Y; Gao Y; Wu M; Zhou R; Chung D; Caraveo G; Xu J
    Lab Chip; 2019 Sep; 19(18):3045-3053. PubMed ID: 31406970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative single cell gene expression profiling in the avian embryo.
    Morrison JA; Box AC; McKinney MC; McLennan R; Kulesa PM
    Dev Dyn; 2015 Jun; 244(6):774-84. PubMed ID: 25809747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms.
    Zhang Q; Wang T; Zhou Q; Zhang P; Gong Y; Gou H; Xu J; Ma B
    Sci Rep; 2017 Jan; 7():41192. PubMed ID: 28112223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment.
    Sun L; K Siddique M; Wang L; Li S
    Electrophoresis; 2021 Nov; 42(21-22):2365-2374. PubMed ID: 33905543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.
    Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M
    Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous analysis of dye-loaded, single cells on a microfluidic chip.
    Phillips KS; Lai HH; Johnson E; Sims CE; Allbritton NL
    Lab Chip; 2011 Apr; 11(7):1333-41. PubMed ID: 21327264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.