These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 37050730)

  • 21. Incorporating statistical strategy into image analysis to estimate effects of steam and allyl isocyanate on weed control.
    Kim DS; Kim SB; Fennimore SA
    PLoS One; 2019; 14(9):e0222695. PubMed ID: 31568510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition pest by image-based transfer learning.
    Dawei W; Limiao D; Jiangong N; Jiyue G; Hongfei Z; Zhongzhi H
    J Sci Food Agric; 2019 Aug; 99(10):4524-4531. PubMed ID: 30868598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.
    Green JM; Owen MD
    J Agric Food Chem; 2011 Jun; 59(11):5819-29. PubMed ID: 20586458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of Ecballium elaterium in hedgerow olive orchards using a low-cost uncrewed aerial vehicle and open-source algorithms.
    Torres-Sánchez J; Mesas-Carrascosa FJ; Pérez-Porras F; López-Granados F
    Pest Manag Sci; 2023 Feb; 79(2):645-654. PubMed ID: 36223137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning.
    Olsen A; Konovalov DA; Philippa B; Ridd P; Wood JC; Johns J; Banks W; Girgenti B; Kenny O; Whinney J; Calvert B; Azghadi MR; White RD
    Sci Rep; 2019 Feb; 9(1):2058. PubMed ID: 30765729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].
    Yang BJ; Huang GQ; Xu N; Wang SB
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2533-8. PubMed ID: 24417111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards deep learning based smart farming for intelligent weeds management in crops.
    Saqib MA; Aqib M; Tahir MN; Hafeez Y
    Front Plant Sci; 2023; 14():1211235. PubMed ID: 37575940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield.
    Stefan L; Engbersen N; Schöb C
    Ecol Appl; 2021 Jun; 31(4):e02311. PubMed ID: 33630392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weed-induced crop yield loss: a new paradigm and new challenges.
    Horvath DP; Clay SA; Swanton CJ; Anderson JV; Chao WS
    Trends Plant Sci; 2023 May; 28(5):567-582. PubMed ID: 36610818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does diversifying crop rotations suppress weeds? A meta-analysis.
    Weisberger D; Nichols V; Liebman M
    PLoS One; 2019; 14(7):e0219847. PubMed ID: 31318949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecologically sustainable weed management: How do we get from proof-of-concept to adoption?
    Liebman M; Baraibar B; Buckley Y; Childs D; Christensen S; Cousens R; Eizenberg H; Heijting S; Loddo D; Merotto A; Renton M; Riemens M
    Ecol Appl; 2016 Jul; 26(5):1352-1369. PubMed ID: 27755749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weed target detection at seedling stage in paddy fields based on YOLOX.
    Deng X; Qi L; Liu Z; Liang S; Gong K; Qiu G
    PLoS One; 2023; 18(12):e0294709. PubMed ID: 38091355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-supervised learning methods for weed detection in turf.
    Liu T; Zhai D; He F; Yu J
    Pest Manag Sci; 2024 Jun; 80(6):2552-2562. PubMed ID: 38265105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SorghumWeedDataset_Classification and SorghumWeedDataset_Segmentation datasets for classification, detection, and segmentation in deep learning.
    Justina MJ; Thenmozhi M
    Data Brief; 2024 Feb; 52():109935. PubMed ID: 38229925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.
    Colbach N; Darmency H; Fernier A; Granger S; Le Corre V; Messéan A
    Environ Sci Pollut Res Int; 2017 May; 24(14):13121-13135. PubMed ID: 28386883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments.
    Sapkota BB; Hu C; Bagavathiannan MV
    Front Plant Sci; 2022; 13():837726. PubMed ID: 35574075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crop Rotation and Intercropping Strategies for Weed Management.
    Liebman M; Dyck E
    Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated pest management and weed management in the United States and Canada.
    Owen MD; Beckie HJ; Leeson JY; Norsworthy JK; Steckel LE
    Pest Manag Sci; 2015 Mar; 71(3):357-76. PubMed ID: 25346235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.
    Romeo J; Guerrero JM; Montalvo M; Emmi L; Guijarro M; Gonzalez-de-Santos P; Pajares G
    Sensors (Basel); 2013 Apr; 13(4):4348-66. PubMed ID: 23549361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.
    Peña JM; Torres-Sánchez J; de Castro AI; Kelly M; López-Granados F
    PLoS One; 2013; 8(10):e77151. PubMed ID: 24146963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.