BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37050820)

  • 1. MOSFE-Capacitor Silicon Carbide-Based Hydrogen Gas Sensors.
    Litvinov A; Etrekova M; Podlepetsky B; Samotaev N; Oblov K; Afanasyev A; Ilyin V
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Palladium Electrode Patterns on Hydrogen Response Characteristics from a Sensor Based on Ta
    Choi KK; Kim S
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon carbide-based hydrogen gas sensors for high-temperature applications.
    Kim S; Choi J; Jung M; Joo S; Kim S
    Sensors (Basel); 2013 Oct; 13(10):13575-83. PubMed ID: 24113685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Fast Response of Pd/Ta
    Hussain M; Jeong W; Kang IS; Choi KK; Jaffery SHA; Ali A; Hussain T; Ayaz M; Hussain S; Jung J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33546357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLL-Based Readout Circuit for SiC-MOS Capacitor Hydrogen Sensors in Industrial Environments.
    Enache A; Draghici F; Mitu F; Pascu R; Pristavu G; Pantazica M; Brezeanu G
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure.
    Roy PK; Haider G; Chou TC; Chen KH; Chen LC; Chen YF; Liang CT
    ACS Sens; 2019 Feb; 4(2):406-412. PubMed ID: 30663312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization, modeling and design parameters identification of silicon carbide junction field effect transistor for temperature sensor applications.
    Ben Salah T; Khachroumi S; Morel H
    Sensors (Basel); 2010; 10(1):388-99. PubMed ID: 22315547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Temperature Gas Sensor Based on Novel Pt Single Atoms@SnO
    Sun L; Wang B; Wang Y
    ACS Appl Mater Interfaces; 2020 May; 12(19):21808-21817. PubMed ID: 32292025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.
    Zhuang H; Yang N; Zhang L; Fuchs R; Jiang X
    ACS Appl Mater Interfaces; 2015 May; 7(20):10886-95. PubMed ID: 25939808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance optimization of high-order Lamb wave sensors based on silicon carbide substrates.
    Chen Z; Fan L; Zhang SY; Zhang H
    Ultrasonics; 2016 Feb; 65():296-303. PubMed ID: 26474949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 4H-SiC CMOS Oscillator-Based Temperature Sensor Operating from 298 K up to 573 K.
    Rinaldi N; Liguori R; May A; Rossi C; Rommel M; Rubino A; Licciardo GD; Di Benedetto L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Degradations of MISFET-Based Hydrogen Sensors with a Pd-Ta
    Podlepetsky B; Samotaev N; Nikiforova M; Kovalenko A
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser optical gas sensor by photoexcitation effect on refractive index.
    Lim G; DeSilva UP; Quick NR; Kar A
    Appl Opt; 2010 Mar; 49(9):1563-73. PubMed ID: 20300151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicon-Carbide (SiC) Nanocrystal Technology and Characterization and Its Applications in Memory Structures.
    Mazurak A; Mroczyński R; Beke D; Gali A
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon carbide formation from methane and silicon monoxide.
    Aarnæs TS; Ringdalen E; Tangstad M
    Sci Rep; 2020 Dec; 10(1):21831. PubMed ID: 33311573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palladium-Decorated Silicon Nanomesh Fabricated by Nanosphere Lithography for High Performance, Room Temperature Hydrogen Sensing.
    Gao M; Cho M; Han HJ; Jung YS; Park I
    Small; 2018 Mar; 14(10):. PubMed ID: 29369498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures, Electronic Properties, and Gas Permeability of 3D Pillared Silicon Carbide Nanostructures.
    Arayawut O; Kerdcharoen T; Wongchoosuk C
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-catalytic deactivation of hazardous sulfate reducing bacteria using palladium nanoparticles decorated silicon carbide: A comparative study with pure silicon carbide nanoparticles.
    Baig U; Gondal MA; Dastageer MA; Khalil AB; Zubair SM
    J Photochem Photobiol B; 2018 Oct; 187():113-119. PubMed ID: 30121421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Silicon Carbide-Based Membranes for Gas Separation.
    Wang Q; Zhou R; Tsuru T
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature resistive gas sensors based on ZnO/SiC nanocomposites.
    Platonov VB; Rumyantseva MN; Frolov AS; Yapryntsev AD; Gaskov AM
    Beilstein J Nanotechnol; 2019; 10():1537-1547. PubMed ID: 31431865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.