These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37052180)

  • 1. A starch- and ROS-regulating heat shock protein helps maintain male fertility in heat-stressed rice plants.
    Chen J
    Plant Physiol; 2023 Jul; 192(3):2227-2229. PubMed ID: 37052180
    [No Abstract]   [Full Text] [Related]  

  • 2. Rice HEAT SHOCK PROTEIN60-3B maintains male fertility under high temperature by starch granule biogenesis.
    Lin S; Liu Z; Sun S; Xue F; Li H; Tursun A; Cao L; Zhang L; Wilson ZA; Zhang D; Liang W
    Plant Physiol; 2023 Jul; 192(3):2301-2317. PubMed ID: 36861636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice.
    Xiang J; Chen X; Hu W; Xiang Y; Yan M; Wang J
    Plant Cell Rep; 2018 Nov; 37(11):1585-1595. PubMed ID: 30099612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.
    Suriyasak C; Harano K; Tanamachi K; Matsuo K; Tamada A; Iwaya-Inoue M; Ishibashi Y
    J Plant Physiol; 2017 Sep; 216():52-57. PubMed ID: 28575747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility.
    Zhao Q; Zhou L; Liu J; Cao Z; Du X; Huang F; Pan G; Cheng F
    Plant Cell Rep; 2018 May; 37(5):741-757. PubMed ID: 29464319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ROS signaling as common element in low oxygen and heat stresses.
    Pucciariello C; Banti V; Perata P
    Plant Physiol Biochem; 2012 Oct; 59():3-10. PubMed ID: 22417734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants.
    Chen PY; Lee KT; Chi WC; Hirt H; Chang CC; Huang HJ
    Planta; 2008 Aug; 228(3):499-509. PubMed ID: 18506480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress.
    Chen X; Lin S; Liu Q; Huang J; Zhang W; Lin J; Wang Y; Ke Y; He H
    Biochim Biophys Acta; 2014 Apr; 1844(4):818-28. PubMed ID: 24566471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and promoter analysis of the OsHSP16.9C gene in rice.
    Zhang Y; Zou B; Lu S; Ding Y; Liu H; Hua J
    Biochem Biophys Res Commun; 2016 Oct; 479(2):260-265. PubMed ID: 27639642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Over-expression of a protein disulfide isomerase gene from Methanothermobacter thermautotrophicus, enhances heat stress tolerance in rice.
    Wang X; Chen J; Liu C; Luo J; Yan X; Aihua Ai ; Cai Y; Xie H; Ding X; Peng X
    Gene; 2019 Feb; 684():124-130. PubMed ID: 30367983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of the plant heat stress response.
    Qu AL; Ding YF; Jiang Q; Zhu C
    Biochem Biophys Res Commun; 2013 Mar; 432(2):203-7. PubMed ID: 23395681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Research Progress: Heat Tolerance in Rice.
    Liu H; Zeng B; Zhao J; Yan S; Wan J; Cao Z
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WHIRLY1 Regulates HSP21.5A Expression to Promote Thermotolerance in Tomato.
    Zhuang K; Gao Y; Liu Z; Diao P; Sui N; Meng Q; Meng C; Kong F
    Plant Cell Physiol; 2020 Jan; 61(1):169-177. PubMed ID: 31596474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Transcriptome Analysis During Anthesis Reveals New Insights into the Molecular Basis of Heat Stress Responses in Tolerant and Sensitive Rice Varieties.
    González-Schain N; Dreni L; Lawas LM; Galbiati M; Colombo L; Heuer S; Jagadish KS; Kater MM
    Plant Cell Physiol; 2016 Jan; 57(1):57-68. PubMed ID: 26561535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hot science in rice research: How rice plants cope with heat stress.
    Li JY; Yang C; Xu J; Lu HP; Liu JX
    Plant Cell Environ; 2023 Apr; 46(4):1087-1103. PubMed ID: 36478590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature.
    Tang Y; Gao CC; Gao Y; Yang Y; Shi B; Yu JL; Lyu C; Sun BF; Wang HL; Xu Y; Yang YG; Chong K
    Dev Cell; 2020 May; 53(3):272-286.e7. PubMed ID: 32275888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress.
    Zhao Q; Zhou L; Liu J; Du X; Asad MA; Huang F; Pan G; Cheng F
    Plant Physiol Biochem; 2018 Jan; 122():90-101. PubMed ID: 29202329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profile in rice panicle: insights into heat response mechanism at reproductive stage.
    Zhang X; Li J; Liu A; Zou J; Zhou X; Xiang J; Rerksiri W; Peng Y; Xiong X; Chen X
    PLoS One; 2012; 7(11):e49652. PubMed ID: 23155476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa).
    Li C; Tao RF; Li Y; Duan MH; Xu JH
    Genomics; 2020 May; 112(3):2119-2129. PubMed ID: 31837402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of OsHSBP1 and OsHSBP2 revealed their involvement in the heat shock response in rice (Oryza sativa L.).
    Rana RM; Dong S; Tang H; Ahmad F; Zhang H
    J Exp Bot; 2012 Oct; 63(16):6003-16. PubMed ID: 22996677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.